K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2023

\(a,A\left(x\right)=2x^3-3x^2+2x+1\\ B\left(x\right)=3x^3+2x^2-x-5\\ b,A\left(x\right)+B\left(x\right)=\left(2x^3+3x^3\right)+\left(2x^2-3x^2\right)+\left(2x-x\right)+\left(1-5\right)=5x^3-x^2+x-4\\ A\left(x\right)-B\left(x\right)=\left(2x^3-3x^3\right)+\left(-3x^2-2x^2\right)+\left(2x+x\right)+\left(1-5\right)=-x^3-5x^2+3x-4\)

a: P(x)=2x^3-x^2+3x+20

Q(x)=-x^3-x^2-3x-4

b: K(x)=2x^3-x^2+3x+20-x^3-x^2-3x-4

=x^3-2x^2+16

H(x)=2x^3-x^2+3x+20+x^3+x^2+3x+4

=3x^3+6x+24

c: K(-2)=(-2)^3-2*(-2)^2+16=0

=>x=-2 là nghiệm của K(x)

H(-2)=3*(-2)^3+6*(-2)+24=24-12-3*8=-12<>0

=>x=-2 ko là nghiệm

a: P(x)=x^3+x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)

=x^3+x^2+x+2-x^3+x^2-x+1

=2x^2+3

N(x)=x^3+x^2+x+2+x^3-x^2+x-1

=2x^3+2x+1

c: M(x)=2x^2+3>=3>0 với mọi x

=>M(x) ko có nghiệm

10 tháng 4 2020

dsssws

12 tháng 5 2023

a, P(x)=(2x^3-x^3)+x^2+(3x-2x)+2=x^3+x^2+x+2
Q(x)=(3x^3-4x^3)+(5x^2-4x^2)+(3x-4x)+1=-x^3+x^2-x+1
b, M(x)=P(x)+Q(x)=x^3+x^2+x+2+(-x^3)+x^2-x+1=2x^2+3
N(x)=P(x)-Q(x)=x^3+x^2+x+2-(-x^3+x^2-x+1)=2x^3+2x+1
c, M(x)=2x^2+3
do x^2>=0 với mọi x=2x^2>=0
nên 2x^2+3>=3 với mọi x
để M(x) có nghiệm thì phải tồn tại x để M(x)=0 ( vô lý vì M(x)>=3 với mọi x)
do đó đa thức M(x) không có nghiệm

a: P(x)=x^3-x^2+x+2

Q(x)=-x^3+x^2-x+1

b: M(x)=P(x)+Q(x)=x^3-x^2+x+2-x^3+x^2-x+1=3

N(x)=P(x)-Q(x)

=x^3-x^2+x+2+x^3-x^2+x-1

=2x^3-2x^2+2x+1

c: M(x)=3

=>M(x) ko có nghiệm

31 tháng 8 2021

a, \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\\ =x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\\ =-x^3+x^2-x+1\)

b) \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1\\ =2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1\\ =2x^3+2x+1\)

c, Ta thấy \(2x^2\ge0,3>0\Rightarrow M\left(x\right)>0\)

\(\Rightarrow M\left(x\right)\) không có nghiệm

a: Ta có: \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)

\(=x^3+x^2+x+2\)

Ta có: \(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)

\(=-x^3-4x^2-x+1\)

b: Ta có: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3-4x^2-x+1\)

\(=-3x^2+3\)

Ta có N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3+4x^2+x-1\)

\(=2x^3+5x^2+2x+1\)

a: \(P\left(x\right)=2x^3-x^3+x^2+3x-2x+2=x^3+x^2+x+2\)

\(Q\left(x\right)=3x^3-4x^3-4x^2+5x^2+3x-4x+1=-x^3+x^2-x+1\)

b: M(x)=P(x)+Q(x)

\(=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

N(x)=P(x)-Q(x)

\(=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c: Vì \(2x^2+3>0\forall x\)

nên M(x) vô nghiệm

8 tháng 3 2022

a, \(P\left(x\right)=x^3+x^2+x+2\)

\(Q\left(x\right)=-x^3+x^2-x+1\)

b, \(M\left(x\right)=x^3+x^2+x+2-x^3+x^2-x+1=2x^2+3\)

\(N\left(x\right)=x^3+x^2+x+2+x^3-x^2+x-1=2x^3+2x+1\)

c, giả sử \(M\left(x\right)=2x^2+3=0\)( vô lí )

vì 2x^2 >= 0 ; 2x^2 + 3 > 0 

Vậy giả sử là sai hay đa thức M(x) ko có nghiệm 

16 tháng 3 2023

`@`\(P\left(x\right)=3x^5-5x^2+x^4-2x-x^5+3x^4-x^2+x+1\)

\(P\left(x\right)=\left(3x^5-x^5\right)+x^4+\left(-5x^2-x^2\right)+\left(-2x+x\right)+1\)

\(P\left(x\right)=2x^5+x^4-6x^2-x+1\)

`@`\(Q\left(x\right)=-5-3x^5-2x+3x^2-x^5+2x-3x^3-3x^4\)

\(Q\left(x\right)=\left(-3x^5-x^5\right)-3x^4-3x^3+3x^2+\left(2x-2x\right)-5\)

\(Q\left(x\right)=-4x^5-3x^4-3x^3+3x^2-5\)

`@`\(P\left(x\right)+Q\left(x\right)=\left(2x^5+x^4-6x^2-x+1\right)+\left(-4x^5-3x^4-3x^3+3x^2-5\right)\)

                      \(=-2x^5-2x^4-3x^3-3x^2-x-4\)