Help me !!! MÌnh cần gấp cho đến 6h 15p làm ơn giúp mình.
Tìm N nguyên để các biểu thức sau nguyên:
1. \(\frac{5-2n}{n-1}\)
2. \(\frac{3n-4}{n-1}\)
3. \(\frac{6n-5}{2n-4}\)
Giúp mình nhé, cần gấp
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
để A có giá trị là số nguyên thì (3n+9) phải chia hết cho(n-4)
n-4 chia hết cho n-4
suy ra 3(n-4) cũng chia hết cho n-4
Vậy 3n-12 chia hết cho n-4
Suy ra (3n+9)-(3n-4) chia hết cho n-4
suy ra 13 chia hết cho n-4
n-4 thuộc tập hợp ƯC của 13
Bạn tự làm tiếp nhé!!!( lập bảng hay không đều được)
nhiều bài quá mình chỉ làm được bài 1,3,4,5
bài 2 mình đang suy nghĩ
bạn có thể vào để hỏi bài !
Bài 1:
a: Để A là số nguyên thì n+7 chia hết cho 3n-1
=>3n+21 chia hết cho 3n-1
=>3n-1+22 chia hết cho 3n-1
mà n là số nguyên
nên \(3n-1\in\left\{-1;2;11;-22\right\}\)
=>\(n\in\left\{0;1;4;-7\right\}\)
b: Để B là số tự nhiên thì \(3n+2⋮4n-5\) và 3n+2/4n-5>=0
=>\(\left\{{}\begin{matrix}12n+8⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}12n-15+23⋮4n-5\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-5\in\left\{1;-1;23;-23\right\}\\\left[{}\begin{matrix}n>\dfrac{5}{4}\\n< -\dfrac{2}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow n=7\)
để A có giá trị bằng 1
suy ra 3 phải chia hết cho n-1
suy ra n-1 \(\in\)Ư(3)={1,3 }
TH1 n-1=1\(\Rightarrow\)n=1+1=2
TH2 n-1=3\(\Rightarrow\)n=3+1=4
Vậy n = 2 hoặc n =4
a) để biểu thức A có giá trị = 1 suy ra 3:n-1=1 suy ra n-1=3
n=4
b) để A là số nguyên tố suy ra 3:n-1 là số nguyên dương
từ trên suy ra n-1=1 hoặc 3
nếu n-1=1 suy ra n =2 3/n-1=3 là snt
nếu n-1=3 suy ra 3/n-1=3/3=1 loại vì ko là snt
xin lỗi bạn nhé nhưng đây là tất cả những gì mình có thể giúp bạn nhưng mình chả biết có đúng hay không
S = 1/2 + 1/3 + 1/4 +...... + 1/ n
=> 1/ S = 2 + 3 + 4 +......+n
=> 1 = ( 2+3+4 +......+ n)S
=> 1 = ( 2+3+4+... +n) ( 1/2+1/3+.......+1/n)
vì n thuộc n nên ( 2+3+4+...+ n) sẽ là số nguyên
=> 1/2 + 1/3 + 1/4 +... + 1/n không phải là số nguyên
Giải thích vi ( 2+3+4+...+n)( 1/2+1/3+1/4+...+1/n) = 1
có 2 Th để dấu bằng xảy ra là
2+3+4+...+n và 1/2 + 1/3 +...+ 1/n cùng bằng 1
Th2 2+3+ 4+ +...+n là phân số đảo ngược của 1/2+1/3+1/4+...+1/n
Th1 không thể xảy ra vì 2=3+4=...+n khác 1
nên Th2 xảy ra lúc đó thì 1/2 + 1/3 + 1/4 +....+ 1/n là phân số
Cái này quá tổng quát lớp 7 đã học rồi cơ ah. Có thể dùng quy nạp để chứng minh
\(A=1+\frac{2^2}{3^2}+\frac{2^2}{5^2}+\frac{2^2}{7^2}+...+\frac{2^2}{2009^2}\)
\(A=1+2^2\left(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+..+\frac{1}{2009^2}\right)\)
Ta có: \(\frac{1}{3^2}< \frac{1}{1.3};\frac{1}{5^2}< \frac{1}{3.5};\frac{1}{7^2}< \frac{1}{5.7};...;\frac{1}{2009^2}< \frac{1}{2007.2009}\)
\(\Rightarrow A< 1+4\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{2007.2009}\right)\)
\(=1+4\cdot\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2007}-\frac{1}{2009}\right)\)
\(=1+2\left(1-\frac{1}{2009}\right)=3-\frac{2}{2009}< 3\)
\(\Rightarrow A< 3\)
d) xét 2 trường hợp
TH1 nếu x>hoăc=1 thì I x-1I=x-1 nên
x-1-x+1=0 => x thuộc N
TH2: nếu x<1 thì Ix-1I=1-x
=>1-x-x+1=0 =>x=1
e) Ix+7I=Ix-9I
=> x+7 = x-9 hoặc x+7=9-x
tự giải tiếp nha
2)
A) vì I x-2 I>hoặc =0
Iy+5I>hoặc =0
=> Ix-2I + Iy+5I >hoặc =0
=>A>hoặc =-10
dấu = xảy ra <=>x-2=0 và y+5=0
=>x=2 y=-5
B)vì (x-5)2>hoặc =0 =>-(x-5)2<hoặc =0
=>B<hoặc =9
dấu = xảy ra <=>x-5=0 <=> x=5
tíck cho mình nhé mình đáh máy cho mỏi cả tay rồi đấy
.
:
a/b= (1+1/6) + (1/2+1/5) + (1/3+1/4)
a/b= 7/6 + 7/10 + 7/12
a/b= 7(1/6+1/10+1/12)
Vì 6x10x12 khong la boi so cua 7 => a/b chia het cho 7 <=> a chia het cho 7 (dpcm)
1) \(\frac{5-2n}{n-1}=\frac{5-2n+2-2}{n-1}=\frac{5-2-2.\left(n-1\right)}{n-1}=\frac{3}{n-1}-\frac{2.\left(n-1\right)}{n-1}=\frac{3}{n-1}+2\)
Để biểu thức trên nguyên thì \(\frac{3}{n-1}\) nguyên => \(3⋮n-1\)
=> \(n-1\inƯ\left(3\right)\)
=> \(n-1\in\left\{1;-1;3;-3\right\}\)
=> \(n\in\left\{2;0;4;-2\right\}\)
Vậy \(n\in\left\{2;0;4;-2\right\}\)
2) \(\frac{3n-4}{n-1}=\frac{3n-3-1}{n-1}=\frac{3.\left(n-1\right)-1}{n-1}=\frac{3.\left(n-1\right)}{m-1}-\frac{1}{n-1}=3-\frac{1}{n-1}\)
Để biểu thức trên nguyên thì \(\frac{1}{n-1}\) nguyên
=> \(1⋮n-1\)
=> \(n-1\inƯ\left(1\right)\)
=> \(n-1\in\left\{1;-1\right\}\)
=> \(n\in\left\{2;0\right\}\)
Vậy \(n\in\left\{2;0\right\}\)
c) \(\frac{6n-5}{2n-4}=\frac{6n-12+7}{2n-4}=\frac{3.\left(2n-4\right)+5}{2n-4}=\frac{3.\left(2n-4\right)}{2n-4}+\frac{5}{2n-4}=3+\frac{5}{2n-4}\)
Để biểu thức trên nguyên thì \(\frac{5}{2n-4}\) nguyên => \(5⋮2n-4\)
=> \(2n-4\inƯ\left(5\right)\)
Mà 2n - 4 là số chẵn \(\forall\) n nguyên nên không tìm được giá trị của n thỏa mãn vì 5 là số lẻ, không có ước chẵn
Vậy không tồn tại giá trị của n thỏa mãn đề bài
Héo mê !!!!!!!!!!!!!