Chứng minh với x,y thuộc Z ta có :
3x + 2y chia hết cho 17 <=> 10x+y chia hết cho 17
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
3x + 2y chia hết cho 17
=> 9(3x+2y) chia hết cho 17
=> 27x + 18y chia hết cho 17
=> (27x +18y) - (17x + 17y) chia hết cho 17( vì 17 chia hết cho 17 nên 17x+17Y chia hết cho 17)
=> 10x + y chia hết cho 17
Vậy nếu 3x + 2y chia hết cho 17 thì 10x + y cũng chia hết cho 17 ( ĐPCM )
ta có :
3x + 2y chia hết cho 17
suy ra 9( 3x + 2y) chia hết cho 17
suy ra 27x + 18y chia hết cho 17
suy ra ( 27x + 18y ) - 9 17x + 17y) chia hết cho 17 ( vì 17 chia hết cho 17 nên 17x + 17y chia hết cho 17)
suy ra 10x + y chia hết cho 17
vậy nếu 3x + 2y chia hết cho 17 thùi 10x + y chũng chia hết cho 17
Lớp 4 thật kg đó Thu Trang?
Nhìn giống toán lớp 5 ghê đó!
Đặt A = 2x + 3y; B = 9x + 5y
Xét biểu thức: 9A - 2B = 9.(2x + 3y) - 2.(9x + 5y)
= (18x + 27y) - (18x + 10y)
= 18x + 27y - 18x - 10y
= 17y
+ Nếu A chia hết cho 17 thì 9A chia hết cho 17; 17y chia hết cho 17
=> 2B chia hết cho 17
Mà (2;17)=1 => B chia hết cho 17
+ Nếu B chia hết cho 17 thì 2B chia hết cho 17; 17y chia hết cho 17 => 9A chia hết cho 17
Mà (9;17)=1 => A chia hết cho 17
Vậy với mọi x,y thuộc Z ta có: 2x + 3y chia hết cho 17 <=> 9x + 5y chia hết cho 17 (đpcm)
Ta có: x - 5y chia hết cho 17
<=> 10.(x - 5y) chia hết cho 17
=> 10x - 50y chia hết cho 17
Vì (10x - 50y) - (10x + y) = -51y
Mà -51y chia hết cho 17
Nên 10x + y chia hết cho 17
Ta có :
3x + y chia hết cho 17
Suy ra ( 3x + 2y)9 = 27x + 18y cũng chia hết cho 17 (1)
Mà: (27x + 18y) - (10x + y) = 17x - 17y chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh.