Rút gọn phân thức:
\(\frac{a^{30}+a^{20}+a^{10}+1}{a^{2042}+a^{2032}+a^{2022}+a^{2012}+a^{30}+a^{20}+a^{10}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{a^{30}+a^{20}+a^{10}+1}{a^{2012}\left(a^{30}+a^{20}+a^{10}+1\right)+\left(a^{30}+a^{20}+a^{10}+1\right)}\)
\(M=\frac{1}{a^{2012}+1}\)
\(\frac{a^{30}+a^{20}+a^{10}+1}{a^{2042}+a^{2032}+a^{2022}+a^{2012}+a^{30}+a^{20}+a^{10}+1}=\frac{a^{30}+a^{20}+a^{10}+1}{a^{2042}+a^{2032}+a^{2022}+a^{2012}}+1=\frac{1}{a^{2012}}+1\)
=\(\frac{a^{2012}+1}{a^{2012}}\)
\(A=\frac{1}{10}-\left(\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90}\right)=\frac{1}{10}-\left(\frac{1}{4.5}+\frac{1}{5.6}+.....+\frac{1}{9.10}\right)\)
\(=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...-\frac{1}{10}\right)=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{10}\right)=\frac{1}{5}-\frac{1}{4}=\frac{-1}{20}\)
\(A=\frac{1}{10}-\frac{1}{20}-\frac{1}{30}-\frac{1}{42}-\frac{1}{56}-\frac{1}{72}-\frac{1}{90}\)
\(A=\frac{1}{10}-\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{90}\right)\)
\(A=\frac{1}{10}-\left(\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{9.10}\right)\)
\(A=\frac{1}{10}-\left(\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(A=\frac{1}{10}-\left[\left(\frac{1}{4}-\frac{1}{10}\right)-\left(\frac{1}{5}-\frac{1}{5}\right)-...-\left(\frac{1}{9}-\frac{1}{9}\right)\right]\)
\(A=\frac{1}{10}-\frac{1}{4}+\frac{1}{10}\)
\(A=\frac{1}{5}-\frac{1}{4}\)
\(A=-\frac{1}{20}\)
a) Ta có: \(A=\frac{2^{2017}}{2^{2017}}+\frac{2^{2016}}{2^{2017}}+\frac{2^{2015}}{2^{2017}}+...+\frac{2^1}{2^{2017}}+\frac{1}{2^{2017}}\)
\(=\frac{1+2^1+2^2+...+2^{2016}+2^{2017}}{2^{2017}}\)
Đặt: B=\(1+2^1+2^2+...+2^{2017}\)
\(\Leftrightarrow2B=2^1+2^2+2^3+....+2^{2017}+2^{2018}\)
\(\Leftrightarrow2B-B=2^{2018}-1\)
\(\Leftrightarrow B=2^{2018}-1\)
\(\Rightarrow A=\frac{B}{2^{2017}}=\frac{2^{2018}-1}{2^{2017}}\)
Mik chỉ biết làm phần a thôi
b/ Sử dụng quy tắc: \(\frac{a+c}{b+c}< \frac{a}{b}\) với \(\left\{{}\begin{matrix}a;b;c>0\\a>b\end{matrix}\right.\)
\(B=\frac{2^{10}-1}{2^{10}-3}>\frac{2^{10}-1+2}{2^{10}-3+2}=\frac{2^{10}+1}{2^{10}-1}\)
\(\Rightarrow B>A\)
\(=\dfrac{a^{20}\left(a^{10}+1\right)+\left(a^{10}+1\right)}{\left(a^{10}+1\right)\left(a^{2032}+a^{2012}+a^{20}+1\right)}\)
\(=\dfrac{a^{20}+1}{\left(a^{20}+1\right)\left(a^{2012}+1\right)}=\dfrac{1}{a^{2012}+1}\)