17/14:x/y=1-1/7
Giúp mình
Mình cần gấp
Ai lm đúng mik sẽ tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+1\right)\left(3y+1\right)=30\)
2x+1 | 1 | 2 | 3 | 5 | 6 | 10 | 15 | 30 |
3y+1 | 30 | 15 | 10 | 6 | 5 | 3 | 2 | 1 |
x | 0 | 1/2(loại) | 1 | 2 | 5/2(loại) | 9/2(loại) | 7 | 29/2(loại) |
y | 29/3(loại) | loại | 3 | 5/3(loại) | loại | loại | 2 | loại |
xy | loại | loại | 3 | loại | loại | loại | 14 | loại |
Vậy ...
Lời giải:
Đặt $n^4+4n^2-1=a^2$ với $a$ là số tự nhiên
$\Leftrightarrow (n^2+2)^2-5=a^2$
$\Leftrightarrow 5=(n^2+2)^2-a^2=(n^2+2-a)(n^2+2+a)$
Do $n^2+2+a\geq n^2+2-a$ với $a\geq 0$ và $n^2+2+a>0$ nên:
$n^2+2+a=5$ và $n^2+2-a=1$
$\Rightarrow 2(n^2+2)=6\Rightarrow n^2+2=3$
$\Leftrightarrow n^2=1$
$\Rightarrow n=\pm 1$
\(4\cdot x\div17=0\)
\(4\cdot x=0\cdot17\)
\(4\cdot x=0\)
\(x=0\div4\)
\(x=0\)
Ta có:
x = \(\frac{17^{16}-3}{17^{16}+1}=\frac{17^{16}+1-4}{17^{16}+1}=\frac{17^{16}+1}{17^{16}+1}-\frac{4}{17^{16}+1}=1-\frac{4}{17^{16}+1}\)
y = \(\frac{17^{17}-3}{17^{17}+1}=\frac{17^{17}+1-4}{17^{17}+1}=\frac{17^{17}+1}{17^{17}+1}-\frac{4}{17^{17}+1}=1-\frac{4}{17^{17}+1}\)
Do \(\frac{4}{17^{16}+1}>\frac{4}{17^{17}+1}\) => \(-\frac{4}{17^{16}+1}< -\frac{4}{17^{17}+1}\) => \(1-\frac{4}{17^{16}+1}< 1-\frac{4}{17^{17}+1}\)
=> x < y
1/4×2/6×3/8×4/10×...×14/30×15/32=1/2^x
<=>1/(2×2)×2/(2×3)×...×14/(2×15)×15/2^5=1/2^x
<=>1/2×1/2×...×1/2×1/(2^5)=1/2^x
<=>1/2^19=1/2^x=>x=19
Đề mình không ghi lại nhé.
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{4\times6\times10\times...\times30\times32}=\frac{1}{2^x}\)\(\frac{1}{2^x}\)
\(\Rightarrow\frac{1\times2\times3\times4\times...\times14\times15}{2\times4\times6\times8\times10\times...\times30\times32}\)\(=\frac{1}{2^{x+1}}\)
\(\Rightarrow\frac{1}{2^{15}\times32}=\)\(\frac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}\times2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy \(x=1\)
Học tốt nhaaa!
17/12
LÀ 7/12 NHÉ