K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2018

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ MH ⊥ NL

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

\(0< \alpha< 90\)

\(0< sin\alpha;cos\alpha< 1\)

\(sin^{2011}\alpha< sin^2\alpha\)

\(cos^{2012}\alpha< cos^2\alpha\)

=>\(\sin^{2011}\alpha+\cos^{2012}\alpha< \sin^2\alpha+\cos^2\alpha=1\)

29 tháng 3 2020

Giải

Ta có : \(\frac{9}{11}-0,81=\frac{9}{11}-\frac{81}{100}=\frac{9}{1100}=\frac{9}{11}.\frac{1}{100}\)

              \(\frac{9}{11}.\frac{1}{10^2}< \frac{1}{10^2}\)( vì \(\frac{9}{11}< 1\)

Do đó : \(\frac{9}{11}-0,81< \left(\frac{1}{10}\right)^2\)

Nên \(\left(\frac{9}{11}-0,81\right)^{2003}< \left(\frac{1}{10}\right)^{4006}=\)0,00...0 1 

                                                                                      \---/ 

                                                                                       4005 chữ số 0 

Vậy tổng cần tìm là 0 

P/s : Đầu bài sai sai xin sửa đầu bài thành 

Viết số \(\left(\frac{9}{11}-0,81\right)^{2012}\) dưới dạng số thập phân. Hãy tính tổng của \(4000\) chữ số thập phân đầu tiên của số này 

                                                                                             Giải

Ta có : \(\left(\frac{9}{11}-0,81\right)^{2012}=\left(\frac{9}{11}-\frac{81}{100}\right)^{2012}\)

                                                 \(=\left(\frac{9}{1100}\right)^{2012}\)       

                                                 \(=\left(\frac{9}{11}.\frac{1}{100}\right)^{2012}\)                                         

                                                 \(=\left(\frac{9}{11}\right)^{2012}.\left(\frac{1}{100}\right)^{2012}\)

                                                 \(=\left(\frac{9}{11}\right)^{2012}.\left(\frac{1}{10^2}\right)^{2012}\)

 Ta có : \(\frac{9}{11}< 1\)

\(\Rightarrow\left(\frac{9}{11}\right)^{2012}< 1\)

\(\Rightarrow\left(\frac{9}{11}\right)^{2012}.\left(\frac{1}{10^2}\right)^{2012}< \left(\frac{1}{10^2}\right)^{2012}\)

\(\Rightarrow\left(\frac{9}{11}\right)^{2012}.\left(\frac{1}{10^2}\right)^{2012}< \left(\frac{1}{10}\right)^{4024}\)

\(\Rightarrow\left(\frac{9}{11}-0,81\right)^{2012}< \left(\frac{1}{10}\right)^{4024}=0,000...01\) (\(4024\) chữ số \(0\)

Vậy tổng của \(4000\) chữ số thập phân đầu tiên của số này là : \(0+0+...+0=0\) 

29 tháng 3 2020

1/16^2012

89 số hoặc hơn

13 tháng 12 2021

hức mình nộp bài rồi nó kêu sai

11 tháng 8 2019

a) A B C H 13 5

xét tam giác ABH vuông tại H có:

\(AH^2=AB^2-BH^2\Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{13^2-5^2}=12\)

theo tỉ lệ thức trong tam giác vuông ABC có:

\(AH^2=BH.CH\Rightarrow HC=\frac{AH^2}{BH}=\frac{12^2}{5}=\frac{144}{5}=28,8\)

xét tam giác vuông AHC có:

\(AC^2=AH^2+HC^2\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{12^2+28,8^2}=\frac{156}{5}=31,2\)

vậy : \(\sin B=\frac{AH}{AB}=\frac{12}{13}\)

\(\sin C=\frac{AH}{AC}=\frac{12}{31,2}=\frac{5}{13}\)

b) A B C H 3 4

theo tỉ số lượng giác trong tam giác ABC có:

\(AH^2=BH.CH\Rightarrow AH=\sqrt{BH.CH}=\sqrt{3.4}=2\sqrt{3}\)

xét tam giác vuông ABH có:

\(AB^2=AH^2+BH^2\Rightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{\left(2\sqrt{3}\right)^2+3^2}=\sqrt{21}\)

theo hệ thức lượng trong tam giác vuông ABC có:

\(AC^2=BC.HC\Rightarrow AC=\sqrt{BC.HC}=\sqrt{7.4}=2\sqrt{7}\)

Vậy : \(\sin B=\frac{AH}{AB}=\frac{2\sqrt{3}}{\sqrt{21}}=\frac{2\sqrt{7}}{7}\)

\(\sin C=\frac{AH}{AC}=\frac{2\sqrt{3}}{2\sqrt{7}}=\frac{\sqrt{21}}{7}\)