Cho tam giác ABC có trung tuyến AM và trọng tâm G. Qua G vẽ Đường thẳng m cắt 2 cạnh AB, AC.
a/ Từ B và C vẽ các đường thẳng // AM, cắt m tại B' và C'. C/m BB'+CC'= AG
b/ Gọi D,E,F lần lượt là hình chiếu của A, B, C xuống m. C/m: BE+ CF=AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vẽ hình ra thì đọc mới hiểu nha !
a) Ta có : BB' vuông góc với d ( giả thiết ) }
MM' vuông góc với d ( giả thiết ) } => BB' // MM' // CC' ( từ vuông góc đến // )
CC' vuông góc với d ( giả thiết ) }
Xét hình thang BB'C'C ( BB' // C'C - chứng minh trên ) có :
M là trung điểm BC ( AM là trung tuyến - giả thiêt ) }
MM' // BB' ; MM' // CC' ( chứng minh trên ) } => M' là trung điểm BB'CC' ( định lí )
Xét hình thang BB'C'C có :
M là trung điểm BC ( AM là trung tuyến ) }
M' là trung điểm B'C' ( chứng minh trên ) } => MM' là đường trung bình của hình thang BB'C'C ( định lí )
=> MM' = BB' + CC' / 2 ( định lí )
ĐÓ MÌNH CHỈ BIẾT LÀM CÂU A) THÔI, XL BẠN NHA !!!
Trên tia đối của MP lấy điểm D sao cho MP=MD.
Ta có: \(\Delta\)MBP=\(\Delta\)MCD (c.g.c) => BP=CD (2 cạnh tương ứng)
Mà BP=CQ => CD=CQ => \(\Delta\)DCQ cân tại C => ^CQD= (1800-^DCQ)/2
=> ^MPB=^MDC (2 góc tương ứng) ở vị trí so le trong => AB//CD => ^DCQ=^IAK (Đồng vị)
M là trung điểm PD, N là trung điểm PQ => MN là đường trung bình của \(\Delta\)PDQ
=> MN//DQ hay IK//DQ => ^CQD=^AKI (Đồng vị)
=> \(\Delta\)AIK có: ^AKI= (1800-^IAK)/2 = (1800-^DCQ)/2 = ^CQD
=> Tam giác AIK cân tại A (đpcm)
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
này cái bạn nguyễn xuân toàn kia bị gì thế ? họ là hỏi bài mà !
Gọi E là trung điểm của AG. Từ E và M kẻ 2 đường thẳng vuông góc với d lần lượt tại K và H.
G là trọng tâm \(\Delta\)ABC, AM là trung tuyến => AG=MG => 1/2AG=MG => EG=MG
=> \(\Delta\)EKG=\(\Delta\)MHG (Cạnh huyền góc nhọn) => EK=MH (2 cạnh tương ứng)
Xét \(\Delta\)AA'G: E là trung điểm AG; EK//AA' (Quan hệ song song vuông góc)
=> K là trung điểm A'G => EK là đường trung bình \(\Delta\)AA'G => EK=1/2AA'
=> MH=1/2AA' (Vì EK=MH). (1)
Xét hình thang BB'C'C: M là trung điểm BC, MH//BB'//CC'
=> MH là đường trung bình hình thang BB'C'C => MH=(BB'+CC')/2 (2)
Từ (1) và (2) => AA'=BB'+CC' (đpcm)