cho tam giác ABC. Gọi M và N lần lượt là trung điểm của AB và CD. Gọi P,Q lần lượt là trung điểm của BM và CN. chứng minh rằng MN//PQ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình vẽ bn tự vẽ
Vì tam giác ABC đều nên góc BAC=60 độ
Mà góc EAD=góc BAC
Suy ra: góc EAD=60 độ
Ta lại có: AE=AD(gt)
Suy ra: tam AED đều có DM là đg trung tuyến
Suy ra DM cũng là đường cao
Xét tam giác vuông DMC có:
\(MP=\frac{1}{2}CD\)(1)
Tương tự: CN vuông góc AB
Xét tam giác vuông CND có:
\(NP=\frac{1}{2}CD\)(2)
Chứng minh tam giác AEB= tam giác ADC (c.g.c) bn tự chứng minh
Suy ra: CD=BE
Mà tam giác AEB có: MN là đường trung bình
Suy ra: \(MN=\frac{1}{2}BE\)
Suy ra: \(MN=\frac{1}{2}CD\)(Vì BE=CD) (3)
Từ (1);(2) và (3)
Vậy tam giác MNP đều
Chúc bn học tốt.
Mik đi hc đến 8h30 tối mới về nên làm hơi trễ
a: Xét ΔABN và ΔACM có
AB=AC
\(\widehat{A}\) chung
AN=AM
Do đó: ΔABN=ΔACM
Suy ra: BN=CM
a: Xét ΔMNP có
MD/ND=ME/EP
Do đó: DE//NP
b: XétΔMNI có DK//NI
nên DK/NI=MD/MN
hay DK/IP=3/7(1)
Xét ΔMIP có KE//IP
nên ME/MP=KE/IP
hay KE/IP=3/7(2)
Từ (1) và (2) suy ra DK=KE
hay K là trung điểm của DE
Xét ∆ABC có :
AE = EB
AD = DC
=> ED là đường trung bình ∆ABC
=> ED//BC
=> ED = BC/2
=> EDCB là hình thang
Xét hình thang EDBC ta có :
EM = MB(gt)
DN = NC (gt)
=> MN là đường trung bình hình thang EDBC
=> MN//ED//BC
Xét ∆BEC ta có :
BM = ME
MI // ED
=> MI là đường trung bình ∆BEC
=> MI = ED/2 = BC/2
Xét ∆CED ta có :
CN = ND
NK // ED
=> NK là đường trung bình ∆CED
=> NK = ED/2 = BC/4
Xét ∆EBC
EM =MB
MK //BC
=> MK là đường trung bình ∆EBC
=> MK = BC/2
=> IK = MK - MI = BC/2 - BC/2 = BC/4
=> MI = IK = KN ( Cùng = BC/4 )
Có: AM=BM(gt)
AN=CN(gt)
=>PQ là đường trung bình của ht BMNC
=>PQ//MN
Bên dưới giải thiếu
Xét ΔABC có:
AM=BM(gt)
AN=CN(gt)
=>MN là đường trung bình
=>MN//BC
=>BMNC là hình thnag
(Xong nối đoạn dưới vào)