Tìm số nguyên x để phân số sau có giá trị là số nguyên:
A=\(\frac{10x-9}{2x-3}\)
Tìm phân số a/b thỏa mãn điều kiện: 3 + \(\frac{a}{b}\)= 3x \(\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
Bài 1
a)Để A thuộc Z
=>-3 chia hết 2x-1
=>2x-1 thuộc Ư(-3)={1;-1;3;-3}
=>x thuộc {1;0;-1;2}
b)Để B thuộc Z
=>4x+5 chia hết 2x-1
=>2(2x-1)+7 chia hết 2x-1
Ta thấy: 2x-1 chia hết 2x-1 =>2(2x-1) cũng chia hết 2x-1
=>7 chia hết 2x-1
=>2x-1 thuộc Ư(7)={1;-1;7;-7}
=>x thuộc {1;0;-3;4}
\(A=\frac{5x+9}{x+1}=\frac{5x+5+4}{x+1}\)\(ĐKXĐ:x\ne-1\)
\(=\frac{5x+5}{x+1}+\frac{4}{x+1}\)
\(=\frac{5\left(x+1\right)}{x+1}+\frac{4}{x+1}\)
\(=5+\frac{4}{x+1}\)
\(\Rightarrow A=5+\frac{4}{x+1}\)
Để \(A\in Z\Rightarrow5+\frac{4}{x+1}\in Z\)
\(\Rightarrow x+1\inƯ\left(4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow x=\left\{0;1;3;-2;-3;-5\right\}\)
a
\(ĐKXĐ:x\ne3;x\ne-3;x\ne0\)
b
\(A=\left(\frac{9}{x^3-9x}+\frac{1}{x+3}\right):\left(\frac{x-3}{x^2+3x}-\frac{x}{3x+9}\right)\)
\(=\left[\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right]:\left[\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right]\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}:\frac{3x-9-x^2}{3x\left(x+3\right)}\)
\(=\frac{9+x^2-3x}{x\left(x-3\right)\left(x+3\right)}\cdot\frac{3x\left(x+3\right)}{-\left(9-3x+x^2\right)}=\frac{-3}{x-3}\)
c
Với \(x=4\Rightarrow A=-3\)
d
Để A nguyên thì \(\frac{3}{x-3}\) nguyên
\(\Rightarrow3⋮x-3\)
Làm nốt.
Để C nguyên thì : 10x - 9 chia hết cho 2x - 3
<=> 10x - 15 + 6 chia hết cho 2x - 3
<=> 5(2x - 3) + 6 chia hết cho 2x - 3
=> 6 chia hết cho 2x - 3
=> 2x - 3 thuộc Ư(6) = {-6;-3;-2;-1;1;2;3;6}
Ta có bảng :
2x - 3 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
2x | -3 | 0 | 1 | 2 | 4 | 5 | 6 | 9 |
x | 0 | 1 | 2 | 3 |
1. \(\frac{x}{y}=\frac{7}{17}\)
3. Có 6 cặp
4. 0 có cặp nào hết
Câu 2 mình không biết nha. Thông cảm
Bài 1:
\(A=\frac{10x-9}{2x-3}=\frac{10x-15+6}{2x-3}=\frac{5.\left(2x-3\right)+6}{2x-3}=\frac{5.\left(2x-3\right)}{2x-3}+\frac{6}{2x-3}=5+\frac{6}{2x-3}\)
Để A nguyên thì \(\frac{6}{2x-3}\)nguyên
=> 6 chia hết cho 2x - 3
=> \(2x-3\inƯ\left(6\right)\)
Mà 2x - 3 là số lẻ => \(2x-3\in\left\{1;-1;3;-3\right\}\)
=> \(2x\in\left\{4;2;6;0\right\}\)
=> \(x\in\left\{2;1;3;0\right\}\)
Vậy \(x\in\left\{2;1;3;0\right\}\)thỏa mãn đề bài
Bài 2:
\(3+\frac{a}{b}=3.\frac{a}{b}\)
=> \(3.\frac{a}{b}-\frac{a}{b}=3\)
=> \(2.\frac{a}{b}=3\)
=> \(\frac{a}{b}=\frac{3}{2}\)
Vậy \(\frac{a}{b}=\frac{3}{2}\)
vừa trả lời hoc24 vừa olm hay thiệt