Tìm dãy gồm 5 số sao cho 2 số liên tiếp nào cũng có tổng là số dương, còn tổng của 5 số còn lại là số âm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tồn tại 50 số thảo mãn đề bài
Gọi các số đó lần lượt là a1, a2, a3, a4, ... a50
Theo bài ra ta có:
a1 + a2 + a3 + ... + a10 < 0 (1)
a11 + a12 + ... + a20 < 0
=> a1 + a2 + ... + a20 < 0
Mà a1 + a2 + ... + a17 > 0 (theo đề bài)
=> a18 + a19 + a20 < 0
Mà a11 + a12 + ... + a20 < 0
=> a11 + a12 + a13 + ... + a17 < 0 (2)
Từ (1), (2), ta có: a1 + a2 + a3 + ... + a17 < 0 (mâu thuẫn với đề bài)
Vậy, không tồn tại 50 số thoả mãn yêu cầu đề bài
Giả sử tồn tại 50 số thảo mãn đề bài
Gọi các số đó lần lượt là a1, a2, a3, a4, ... a50
Theo bài ra ta có:
a1 + a2 + a3 + ... + a10 < 0 (1)
a11 + a12 + ... + a20 < 0
=> a1 + a2 + ... + a20 < 0
Mà a1 + a2 + ... + a17 > 0 (theo đề bài)
=> a18 + a19 + a20 < 0
Mà a11 + a12 + ... + a20 < 0
=> a11 + a12 + a13 + ... + a17 < 0 (2)
Từ (1), (2), ta có: a1 + a2 + a3 + ... + a17 < 0 (mâu thuẫn với đề bài)
Vậy, không tồn tại 50 số thoả mãn yêu cầu đề bài
Ai trên 10 điểm hỏi đáp thì mình nha mình đang cần gấp chỉ còn 59 điểm là tròn rồi mong các bạn hỗ trợ mình sẽ đền bù xứng đáng
Số đầu tiên của dãy số là 1001, số liền sau là 1011 nên số tiếp sau là 1021 .
Hiệu hai số liền nhau là : 1011 -1001 = 1021 -1011 = 10 ( đơn vị)
Từ số hạng đầu đến số hạng thứ 101 có số khoảng cách là : 10 x 100 = 1000 (đơn vị)
Số hạng cuối cùng là :1001 + (101 – 1) x 10 = 2001
Gọi 5 số lần lượt là a ; b ;c ;d ; e
Theo đề ra ta có
(a+b) = x
(b+c) = y
(c+d) = z
(d+e) = t
(e+a) = q
Với \(x;y;z;t;q>0\)
\(\Rightarrow\left(a+b\right)+\left(b+c\right)+\left(c+d\right)+\left(d+e\right)+\left(e+a\right)=x+y+z+t+q\)
\(\Rightarrow2\left(a+b+c+d+e\right)=x+y+z+t+q\)
\(\Rightarrow a+b+c+d+e=\frac{x+y+z+t+q}{2}\)
\(\Rightarrow\frac{x+y+z+t+q}{2}< 0\left(1\right)\)
Mặt khác vì \(x;y;z;t;q>0\)
\(\Rightarrow x+y+z+t+q>0\)
Nhân hai vế với \(\frac{1}{2}\)
Vì 1/2 lớn hơn 0 nên bất đẳng thức giứ nguyên chiều
\(\Rightarrow\left(x+y+z+t+q\right)\frac{1}{2}>0.\frac{1}{2}\)
\(\Rightarrow\frac{x+y+z+t+q}{2}>0\left(2\right)\)
Vì (1) mâu thuẫn với (2) nên
\(x;y;z;t;q\in\varnothing\)
cảm ơn cậu nhiều