Phân tích đa thức thành nhân tử bằng phương pháp hệ số bất định :
\(2x^4+3x^3-9x^2-3x+2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x4 - 3x3 - 7x2 +6x+8
= 2x4 - 4x3 + x3 - 2x2 - 5x2 +10x - 4x +8
= 2x3.(x-2) +x2.(x-2) - 5x.(x-2) - 4.(x-2)
= (x-2).(2x3 +x2 - 5x -4)
= (x-2).(2x3 + 2x2 - x2 - x - 4x-4)
= (x-2).(x+2).(2x2 -x -4)
....
Bài làm
3x2 – 8x + 4 = (4x2 – 8x + 4) - x2 = (2x – 2)2 – x2 = (2x – 2 + x)(2x – 2 – x)
= (x – 2)(3x – 2)
3x^2+5x -2
=3x^2 -x +6x -2
=(3x^2 -x) + (6x - 2)
=x (3x -1 )+ 2(3x -1)
=(3x - 1)(x+2)
Chúc bạn học tốt!!!!!!!!!!!!! nha.
Đặt \(P\left(x\right)=2x^4+3x^3-9x^2-3x+2\)
Giả sử nhân tử của P(x) có dạng : \(P\left(x\right)=2\left(x^2+ax+b\right)\left(x^2+cx+d\right)=\left(x^2+ax+b\right)\left(2x^2+2cx+2d\right)\)
Khai triển : \(P\left(x\right)=2x^4+2cx^3+2dx^2+2ax^3+2acx^2+2adx+2bx^2+2bcx+2bd\)
\(=2x^4+x^3\left(2c+2a\right)+x^2\left(2d+2ac+2b\right)+x\left(2ad+2cb\right)+2bd\)
Dùng phương pháp hệ số bất định :
\(\Rightarrow\begin{cases}2a+2c=3\\2ac+2b+2d=-9\\2ad+2bc=-3\\bd=1\end{cases}\) . Giải ra được \(\begin{cases}a=-1\\b=-1\\c=\frac{5}{2}\\d=-1\end{cases}\)
Vậy \(P\left(x\right)=2\left(x^2-x-1\right)\left(x^2+\frac{5}{2}x-1\right)=\left(x^2-x-1\right)\left(2x^2+5x-2\right)\)