K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2016

\(\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{\left(n+1\right)\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}-\frac{n\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}\right)\)

\(\frac{1}{2}\left(\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}-\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

 

27 tháng 8 2016

\(\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{1}{2}\left(\frac{\left(n+1\right)\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}-\frac{n\left(n+1\right)}{n\left(n+1\right)\left(n+1\right)\left(n+2\right)}\right)\)

\(=\frac{1}{2}\left(\frac{1}{n\left(n+2\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)=\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}-\frac{\left(n+1\right)\left(n+2\right)}{n\left(n+2\right)\left(n+1\right)\left(n+2\right)}\)

\(=\frac{1}{n\left(n+1\right)\left(n+2\right)}\)

8 tháng 2 2019

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)

                                      \(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)

                                      \(=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

CM : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\)

Có : \(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}.\frac{\left(n+2\right)-n}{n\left(n+1\right)\left(n+2\right)}\)

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}\)\(=\frac{1}{2}\left[\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\right]\)

\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left[\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right]\) đpcm

15 tháng 6 2019

Cảm ơn bạn

DD
8 tháng 8 2021

\(\frac{1}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{2}{\left(n-1\right)n\left(n+1\right)}=\frac{1}{2}.\frac{\left(n+1\right)-\left(n-1\right)}{\left(n-1\right)n\left(n+1\right)}\)

\(=\frac{1}{2}\left[\frac{1}{\left(n-1\right)n}-\frac{1}{n\left(n+1\right)}\right]\)

Ta có đpcm. 

2 tháng 4 2018

Ta có : \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

Vì VT=VP nên ta có đpcm

2 tháng 4 2018

\(\text{Ta có:}\)

\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}=\frac{1}{n}-\frac{1}{n+1}-\frac{1}{n+1}+\frac{1}{n+2}=\frac{2\left(n+1\right)}{n\left(n+2\right)}-\frac{2}{n+1}\left(1\right)\)

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}+\frac{2}{n+1}-\frac{2}{n+1}=\frac{2n\left(n+2\right)+2}{n\left(n+1\right)\left(n+2\right)}-\frac{2}{n+1}=\frac{2\left(n+1\right)^2}{n\left(n+1\right)\left(n+2\right)}-\frac{2}{n+1}=\frac{2\left(n+1\right)}{n\left(n+2\right)}-\frac{2}{n+1}\left(2\right)\)

\(\text{Từ (1) và (2) ta có: ĐPCM}\)

10 tháng 10 2015

 Xét vế phải: \(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

= \(\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}\)

= \(\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}\)

= \(\frac{2}{n\left(n+1\right)\left(n+2\right)}\)   

= VT

=> Đpcm
 

10 tháng 10 2015

quy đồng là ra ngay đó mà