Cho tam giác ABC có \(\widehat{B}=2\widehat{C}\)
a) Chứng minh : \(\widehat{C}< 60\) độ
b) Tìm điều kiện của \(\widehat{C}\) để chọn tam giác ABC là tam giác nhọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi H là trung điểm của AC. \(\Delta\)DAC cân tại D.
Do đó DH\(\perp\)AC và AH = \(\frac{1}{2}\)AC (1)
Vẽ AK \(\perp\)BC. Vì \(\Delta\)AKC vuông tại K và ^BCA = 300
nên AK = \(\frac{1}{2}\)AC (2)
Từ (1) và (2) suy ra AK = AH
Xét \(\Delta\)AKB và \(\Delta\)AHD có:
^AKB = ^AHD (=900)
AK = AH(gt)
^BAK = ^DAH (=500)
Do đó \(\Delta\)AKB = \(\Delta\)AHD (g.c.g)
=> AB = AD
Vậy \(\Delta\)ABD cân tại A(đpcm)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
bạn kham khảo tại link dưới đây nhé.
câu hỏi của Nguyễn Hoàng Giang - Toán lớp 7 - Học toán với OnlineMath
a, xét tam giác AMC và tam giác DMB có:
góc AMC= góc BMD(đối đỉnh)
AM=DM(gt)
BM=CM(gt)
suy ra tam giác AMC=tam giác BMD(c-g-c)
a)
C < 60 vì A + B + C = A + 3C ( VÌ B = 2C )
mà C = 60 =) A + 180 = 180
=) A = 0
Vậy C < 60 để A thõa mãn
Vậy C < 60
Muon
tam giác ABC là tam giác nhọn
=) C < 90 độ
=) C + B < 180 độ
=) 3C < 180 độ
=) C < 60 độ
Vậy C < 60 độ để tam giác ABC là tam giác nhọn