Cho đoạn BC cố định có độ dài 2a với a > 0 và một điểm A di động sao cho góc BAC = \(90^o\). Kẻ AH vuông góc với BC tại H. Gọi HE và HF lần lượt là đường cao của tam giác ABH và tam giác ACH.
1. Chứng minh rằng: \(BC^2=3AH^2+BE^2+CF^2\)
2. Tìm điều kiện cùa tam giác ABC để tổng \(BE^2+CF^2\) đạt giá trị nhỏ nhất
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
2 tháng 8 2019
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo!
2 tháng 8 2019
Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath
Em tham khảo!
6 tháng 4 2023
a: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
=>ΔAHB=ΔAHC
b: ΔABC cân tại A
mà AH là trung tuyến
nên AH là phân giác
c: Xet ΔAEH vuôngtại E và ΔAFH vuông tại F có
AH chung
góc EAH=góc FAH
=>ΔAEH=ΔAFH
=>AE=AF
=>ΔAEF cân tại A
mà AI là phân giác
nên AI là trung tuyến