K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2016

\(A=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{2014}\)

\(A=\frac{1}{2}+\frac{1^2}{2^2}+...+\frac{1^{2014}}{2^{2014}}\)

\(A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)

\(2A=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

\(2A=1+\frac{1}{2}+...+\frac{1}{2^{2013}}\)

\(2A-A=\left(1+\frac{1}{2}+...+\frac{1}{2^{2013}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\right)\)

\(A=1-\frac{1}{2^{2014}}< 1\)

Đpcm

24 tháng 10 2018

gap A len 1/2

24 tháng 10 2018

\(2A=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{2015}\)

\(\Rightarrow2A-A=1-\left(\frac{1}{2}\right)^{2014}\Rightarrow A=1-\left(\frac{1}{2}\right)^{2014}< 1\)

9 tháng 8 2019

2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.

Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)

\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)

\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)

Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)

Từ (2) và (3) ta có đpcm.

Sai thì chịu

9 tháng 8 2019

Xí quên bài 2 b:v

b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)

Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)

\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)

Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)

Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)

\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

11 tháng 12 2016

\(B=\frac{1}{2}+\left(\frac{1}{2}\right)^2+...+\left(\frac{1}{2}\right)^{2015}\)

\(B=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\)

\(2B=2\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)

\(2B=1+\frac{1}{2}+...+\frac{1}{2^{2014}}\)

\(2B-B=\left(1+\frac{1}{2}+...+\frac{1}{2^{2014}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)

\(B=1-\frac{1}{2^{2015}}< 1\). Vậy ta có điều phải chứng minh

16 tháng 8 2016

Ta có

\(A=\frac{\left(1^2-2^2\right)\left(1^2-3^2\right).....\left(1^2-2014^2\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)3\left(-2\right)4.....\left(-2013\right)2015}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left[\left(-1\right)\left(-2\right)...\left(-2013\right)\right]\left(3.4.5...2015\right)}{\left(2.3.4.....2014\right)\left(2.3....2014\right)}\)

\(\Leftrightarrow A=\frac{\left(-1\right)2015}{2014.2}=-\frac{2015}{4028}< -\frac{2014}{4028}=-\frac{1}{2}\)

=> A<-1/2

 

\(A=\left(\frac{-1}{2}\right).\left(\frac{-1}{2}\right)^2.\left(\frac{-1}{2}\right)^3.\left(\frac{-1}{2}\right)^4.....\left(\frac{-1}{2}\right)^{2014}\)

\(=\left[\left(\frac{-1}{2}\right).\left(\frac{-1}{2}\right)^3.....\left(\frac{-1}{2}\right)^{2013}\right].\left[\left(\frac{-1}{2}\right)^2.\left(\frac{-1}{2}\right)^4.....\left(\frac{-1}{2}\right)^{2014}\right]\)

mà thừa số thứ nhất có dấu âm (vì lũy thừa bậc lẻ của một số âm luôn luôn âm) và thừa số thứ hai có dấu dương (vì lũy thừa bậc chẵn của mọi số luôn luôn dương)

nên A có dấu âm