K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2021

- Xét phương trình hoành độ của (P) với Ox : \(\Rightarrow\left\{{}\begin{matrix}OA\left(\dfrac{4}{3};0\right)\\OB\left(-1;0\right)\end{matrix}\right.\)

- Từ đồ thị hàm số \(\Rightarrow S_{ABMN}=\dfrac{1}{2}\left(\left|AB\right|+\left|MN\right|\right).\left|m\right|=4\)

\(\Rightarrow\left(\dfrac{7}{3}+\left|MN\right|\right).\left(-m\right)=8\)

\(\Rightarrow\left|MN\right|=-\dfrac{8}{m}-\dfrac{7}{3}\)

\(\Rightarrow MN^2=\dfrac{64}{m^2}+\dfrac{112}{3m}+\dfrac{49}{9}\)

- Xét phương trình hoành độ giao điểm (P) và d :\(3x^2-x-m-4=0\)

Có : \(\Delta=b^2-4ac=1-4.3\left(-m-4\right)=12m+49\)

- Để P cắt d tại hai điểm phân biệt <=> \(m>-\dfrac{49}{12}\)

\(\Rightarrow-\dfrac{49}{12}< m< 0\)

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1}{3}\\x_1x_2=-\dfrac{m+4}{3}\end{matrix}\right.\)

Thấy : \(\left|MN\right|=\left|x_1\right|+\left|x_2\right|\)

\(\Rightarrow MN^2=x^2_1+2\left|x_1x_2\right|+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2+2\left|x_1x_2\right|\)

\(\Rightarrow\dfrac{2\left(m+4\right)}{3}+\dfrac{2}{3}\left|m+4\right|=\dfrac{64}{m^2}+\dfrac{112}{3m}+\dfrac{16}{3}\)

TH1 : \(m+4< 0\)

\(\Rightarrow16m^2+112m+192=0\)

\(\Rightarrow\left[{}\begin{matrix}m=-3\\m=-4\end{matrix}\right.\)

TH2 : \(m+4\ge0\)

\(\Rightarrow\dfrac{4\left(m+4\right)m^2}{3m^2}=\dfrac{16m^2+112m+192}{3m^2}\)

\(\Rightarrow4m^3-112m-192=0\)

( Đoạn này giải máy nha cho nhanh nếu ko tách đc bl để mk tách cho )

\(\Rightarrow\left[{}\begin{matrix}m=-2\\m=-4\end{matrix}\right.\)

Vậy ...

 

 

26 tháng 10 2018

mk chỉ cho cách lm :

a) thế điềm \(O\left(0;0\right)\) vào d \(\Leftrightarrow x=0;y=0\) --> m

b) thế điểm \(\left(3;5\right)\) vào d \(\Leftrightarrow x=3;y=5\) --> m

c) thế \(x=0;y=0\) rồi biến đổi đẳng thức d

rồi tìm điều kiện để đẳng thức đó không đúng

d) ta có đường thẳng \(d\backslash\backslash Ox\) có dạng \(y=a\)\(d\backslash\backslash Oy\) có dạng \(x=b\)

--> \(d\backslash\backslash Ox\) \(\Leftrightarrow\) \(2m-1=0\) và --> \(d\backslash\backslash Oy\) \(\Leftrightarrow\) \(m-2=0\)

--> ...

Câu 1 1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\) 2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\) Câu 2: 1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ...
Đọc tiếp

Câu 1

1. Cho parabol (P): y=\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ x1 , x2 thỏa mãn điều kiện x1+x2 \(\le\) 4. Tìm GTLN và GTNN của biểu thức sau: P = \(x^{_13}+x^{_23}+x_1x_2\left(3x_1+3x_2+8\right)\)

2. Giải phương trình: \(\sqrt{x^4-x^2+4}+\sqrt{x^4+20x^2+4}=7x\)

Câu 2:

1. Cho parabol (P): \(y=x^2-2mx+m^2-2m+4\). Tìm tất cả các giá trị thực của m để (P) cắt Ox tại 2 điểm có hoành độ không âm x1, x2. Tính theo m giá trị của biểu thức \(P=\sqrt{x_1}+\sqrt{x_2}\) và tìm giá trị nhỏ nhất của P.

2. Giải bất phương trình: \(\frac{3-2\sqrt{x^2+3x+2}}{1-2\sqrt{x^2-x+1}}>1\)

Câu 3:

1. Cho hàm số \(y=f\left(x\right)=mx^2-2\left(m-1\right)x+m-2\). Tìm m để trên đồ thị của \(f\left(x\right)\)có 2 điểm \(A\left(x_A;y_A\right),B\left(x_B,y_B\right)\)thỏa mãn: \(2x_A-y_A-3=0,2x_B-y_B-3=0\)\(AB=\sqrt{5}\)

2. Giải phương trình: \(x\sqrt{x}-1=\left(\sqrt{x}-1\right).\sqrt{2x^2-3x+2}\)

Câu 4:

1. Cho parabol (P): \(y=x^2-\left(m-1\right)x+\left(2m^2-8m+6\right)\). Giả sử (P) cắt Ox tại 2 điểm có hoành độ \(x_1,x_2\). Tìm GTLN và GTNN của biểu thức \(P=\left|x_1x_2-2\left(x_1+x_2\right)\right|\)

2. Giải bất phương trình: \(\left(2x-5-\sqrt{x^2-x-25}\right)\sqrt{x^2-5x+6}\le0\)

Câu 5:

1. Cho parabol (P): \(y=-x^2\) và đường thẳng d đi qua điểm I (0; -1). và có hệ số góc là k. Gọi A và B là các giao điểm của (P) và d. Giả sử A, B lần lượt có hoành độ là \(x_1,x_2\)

a. Tìm k để trung điểm của đoạn AB nằm trên trục tung.

b. Tìm GTNN của biểu thức: \(P=\left|x^3_1-x^3_2\right|\)

2. Giải phương trình: \(1+\left(6x+2\right)\sqrt{2x^2-1}=2\left(5x^2+4x\right)\)

0
8 tháng 5 2022

Phương trình hoành độ giao điểm của (P) và (d) là \(x^2=2x-m\Leftrightarrow x^2-2x+m=0\) (*)

Pt (*) có \(\Delta'=\left(-1\right)^2-1.m=1-m\)

Để (d) cắt (P) tại 2 điểm phân biệt \(x_1,x_2\) thì pt (*) phải có 2 nghiệm phân biệt \(x_1,x_2\) \(\Leftrightarrow\Delta'>0\Leftrightarrow1-m>0\Leftrightarrow m< 1\)

Khi \(m< 1\), áp dụng hệ thức Vi-ét, ta có \(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}y_1=x_1^2\\y_2=x_2^2\end{matrix}\right.\)\(\Rightarrow y_1+y_2=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=2^2-2m=4-2m\)

Do đó để \(y_1+y_2+x_1^2x_2^2=6\left(x_1+x_2\right)\)\(\Leftrightarrow4-2m+m^2=6.2\)\(\Leftrightarrow m^2-2m-8=0\) (1)

pt (1) có \(\Delta'=\left(-1\right)^2-1.\left(-8\right)=9>0\)

Vậy (1) có 2 nghiệm phân biệt \(\left[{}\begin{matrix}m_1=\dfrac{-\left(-1\right)+\sqrt{9}}{1}=4\\m_2=\dfrac{-\left(-1\right)-\sqrt{9}}{1}=-2\end{matrix}\right.\)

Như vậy để (d) cắt (P) tại 2 điểm có hoành độ và tung độ thỏa mãn yêu cầu đề bài thì \(\left[{}\begin{matrix}m=4\\m=-2\end{matrix}\right.\)

8 tháng 5 2022

Mà do \(m< 1\) nên ta chỉ nhận trường hợp \(m=-2\)

Vậy để (d) cắt (P) tại 2 điểm phân biệt có hoành độ và tung độ thỏa mãn đề bài thì \(m=-2\)