K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2016

\(f'\left(x\right)=\frac{\frac{\sqrt{x+1}}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x+1}}}{x+1}=\frac{1}{\sqrt{x}\left(\sqrt{x+1}\right)^3}>0;\forall x\in\left(0;4\right)\)

Mà f(x) liên tục trên [0;4] nên hàm số đồng biến trên [0;4]

\(\Rightarrow Maxf\left(x\right)_{\left[0;4\right]}=f\left(4\right)\)

YCBT \(\Leftrightarrow\begin{cases}m>1\\f\left(4\right)\le3\end{cases}\)  \(\Leftrightarrow\begin{cases}m>1\\\frac{4+m}{\sqrt{5}}\le3\end{cases}\)\(\Leftrightarrow1< m< 3\sqrt{5}-4\)

14 tháng 11 2017

+ Đạo hàm f'(x) =  2 - m x 2 ( x + 1 ) x ( x + 1 )

f'(x) = 0  ⇒ x   =   2 m     ↔   x   =   m 2 4   ∈ [   0 ; 4 ] ,  ∀ m > 1

+ Lập bảng biến thiên, ta kết luận được  

m a x [ 0 ; 4 ]   f ( x )   =   f ( 4 m 2 )   =   m 2   + 4

+ Vậy ta cần có  m 2 + 4   <   3  

↔   m < 5   →   m > 1     m   ∈ ( 1 ; 5 )

Chọn C.

17 tháng 6 2018

25 tháng 5 2018

Chọn A.

TXĐ: D = R.

 có 2 nghiệm phân biệt 

BBT:

Vậy hàm số đạt giá trị lớn nhất là 

YCBT 

10 tháng 10 2019

Đáp án là A

10 tháng 1 2022

\(y=\left|x^2-2x-m\right|=-x^2+2x+m\)

\(\left(nếu:x^2-2x-m< 0\right)\)

\(f\left(x\right)=-x^2+2x+m\Rightarrow x=\dfrac{-b}{2a}=1\in\left[-3;2\right]\)

\(f\left(-3\right)=m-15\)

\(f\left(1\right)=m+1\)

\(f\left(2\right)=m\Rightarrow f\left(-3\right)< f\left(2\right)< f\left(1\right)\)

\(\Rightarrow max_{f\left(x\right)}=m+1=10\Leftrightarrow m=9\)

\(do..m< 0\Rightarrow m=9\left(ktm\right)\)

\(\Rightarrow không\) \(có\) \(giá\) \(trị\) \(m\) \(thỏa\)

10 tháng 4 2019

Đạo hàm f'(x) =  m 2 - m + 1 ( x + 1 ) 2 > 0,  ∀ x   ∈   [ 0 ; 1 ]  

Suy ra hàm số f(x)  đồng biến trên [0; 1] nên min f(x) = f(0) = -m2+m

Theo bài ta có:

-m2+ m= -2 nên m= -1 hoặc m= 2.

Chọn D.

13 tháng 11 2019

12 tháng 7 2017