K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2021

nhanh giùm mình được không

 

Bài 1: 

a) Ta có: \(P=1+\dfrac{3}{x^2+5x+6}:\left(\dfrac{8x^2}{4x^3-8x^2}-\dfrac{3x}{3x^2-12}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{8x^2}{4x^2\left(x-2\right)}-\dfrac{3x}{3\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\left(\dfrac{4}{x-2}-\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x+2}\right)\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}:\dfrac{4\left(x+2\right)-x-\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)

\(=1+\dfrac{3}{\left(x+2\right)\left(x+3\right)}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{4x+8-x-x+2}\)

\(=1+3\cdot\dfrac{\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=1+\dfrac{3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{\left(x+3\right)\left(2x+10\right)+3\left(x-2\right)}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+10x+6x+30+3x-6}{\left(x+3\right)\left(2x+10\right)}\)

\(=\dfrac{2x^2+19x-6}{\left(x+3\right)\left(2x+10\right)}\)

AH
Akai Haruma
Giáo viên
3 tháng 4 2022

Lời giải:

a. ĐKXĐ: $x\neq 1; x>0$

\(A=\left[\frac{\sqrt{x}+2}{(\sqrt{x}+1)^2}-\frac{1}{\sqrt{x}+1}\right].\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{\sqrt{x}+2-(\sqrt{x}+1)}{(\sqrt{x}+1)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{1}{(\sqrt{x}+1)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}=\frac{1}{\sqrt{x}(\sqrt{x}+1)}\)

b. Với $x$ nguyên, để $Q$ nguyên thì $\sqrt{x}(\sqrt{x}+1)$ là ước của $1$

Mà $\sqrt{x}(\sqrt{x}+1)>0$ với mọi $x>0; x\neq 1$ nên $\sqrt{x}(\sqrt{x}+1)=1$

$\Leftrightarrow x+\sqrt{x}-1=0$

$\Leftrightarrow x=\frac{-1\pm \sqrt{5}}{2}$ (vô lý) 

Vậy không tồn tại $x$ thỏa mãn đề bài.

4 tháng 7 2021

a, Ta có : \(Q=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{2}{x-1}\)

\(=\dfrac{x+\sqrt{x}-2\sqrt{x}+2-2}{x-1}=\dfrac{x-\sqrt{x}}{x-1}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

b, - Thay x = 9 vào Q ta được : Q = 0,75

Vậy ...

7 tháng 12 2018

\(\left(5x+3\right)^2-2\left(5x+3\right)\left(x+3\right)+\left(x+3\right)^2\)

Dễ thấy đây là hằng đẳng thức thứ hai với 5x + 3 là A và x + 3 là B

Do đó : \(\left(5x+3\right)^2-2\left(5x+3\right)\left(x+3\right)+\left(x+3\right)^2\)

\(=\left(5x+3-x-3\right)^2\)

\(=\left(4x\right)^2\)

\(=16x^2\)

26 tháng 5 2023

\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)

\(=0-11x+24\)

\(=-11x+24\)

\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)

\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)

\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)

\(=0+0+5\)

\(=5\)

14 tháng 2 2019

3x(x – 2) – 5x(1 – x) – 8( x 2  – 3)

= 3x.x + 3x .( -2) – [5x.1 + 5x. (- x)] – [8 x 2  + 8.(- 3)]

= (3 x 2  – 6x) – (5x – 5 x 2 ) – (8 x 2  – 24)

= 3 x 2  – 6x – 5x + 5 x 2  – 8 x 2 + 24

= ( 3 x 2  +5 x 2  – 8 x 2 )- ( 6x + 5x) + 24

= - 11x + 24

17 tháng 6 2021

\(A=\left|-3\right|+2+\left|5x\right|\)

\(A=3+2+\left(-5x\right)=-5x+5\)

P=x^3+3/5x^2y-3xy-3/5x^2y-xy+x^3

=2x^3-4xy

=2*(-2)^3-4*(-2)*1/3

=-16+8/3=-40/3