Tính các góc của tam giác ABC biết độ dài 3 cạnh là AB=9cm ,AC =12cm ,BC =15cm (góc làm tròn đến độ)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Áp dụng HTL: \(BC=\dfrac{AB^2}{BH}=18\left(cm\right)\)
Áp dụng PTG: \(AC=\sqrt{BC^2-AB^2}=9\sqrt{3}\left(cm\right)\)
Áp dụng HTL: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{9\cdot9\sqrt{3}}{18}=\dfrac{9\sqrt{3}}{2}\left(cm\right)\)
b, Áp dụng HTL: \(\left\{{}\begin{matrix}AB\cdot AE=AH^2\\AC\cdot AF=AH^2\end{matrix}\right.\Rightarrow AB\cdot AE=AC\cdot AF\)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)
Mà góc A chung nên \(\Delta AEF\sim\Delta ACB\left(c.g.c\right)\)
Do đó \(\widehat{AEF}=\widehat{ACB}\)
Câu 1:
Xét tam giác ABH vuông tại H, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
202 = AH2 + 162
400 = AH2 + 256
AH2 = 400 - 256
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
AC2 = 122 + 52
AC2 = 144 + 25
AC2 = 169
AC = \(\sqrt{169}\)= 13 (cm)
Vậy AH = 12 cm
AC = 13 cm
Bài 2:
Xét tam giác AHC vuông tại H, ta có:
AC2 = AH2 + HC2 (định lý Py-ta-go)
152 = AH2 + 92
225 = AH2 + 81
AH2 = 225 - 81
AH2 = 144
AH = \(\sqrt{144}\)= 12 (cm)
Xét tam giác AHB vuông tại, ta có:
AB2 = AH2 + HB2 (định lý Py-ta-go)
AB2 = 122 + 52
AB2 = 144 + 25
AB2 = 169
AB = \(\sqrt{169}\)= 13 (cm)
Vậy AB = 13 cm
\(a,BC=BH+HC=25(cm)\\ AB=\sqrt{BH.BC}=15(cm)\\ AC=\sqrt{CH.BC}=20(cm)\\ AH=\dfrac{AB.AC}{BC}=12(cm)\\ b,AI \text{ là đường nào?}\)
+) có AB2+AC2=92+122=225
và BC2=152=225
=> AB2+AC2=BC2
=> tam giac ABC vuong tai A
+) góc A=90o
sin B= AC/BC=12/15 => B=53o
=> goc C=180-90-53=37o