Cho tam giác ABC vuông tại A (AB < AC), đường cao AH.
a, Chứng minh tam giác BHA ~ tam giác BAC. Từ đó suy ra BA2 = BH.BC
b, Lấy I thuộc AH. Kẻ đường thẳng đi qua B và vuông góc với CI tại K. Chứng minh rằng: CH.CB = CI.CK
c, Tia BK cắt HA tại D. Trên tia đối của tia KC lấy điểm M sao cho BM = BA. Chứng minh rằng góc BMD = 90o
a) Xét ΔBHA vuông tại H và ΔBAC vuông tại A có
\(\widehat{ABH}\) chung
Do đó: ΔBHA\(\sim\)ΔBAC(g-g)
Suy ra: \(\dfrac{BA}{BC}=\dfrac{BH}{BA}\)
hay \(BA^2=BH\cdot BC\)
b) Xét ΔCHI vuông tại H và ΔCKB vuông tại K có
\(\widehat{ICH}\) chung
Do đó: ΔCHI\(\sim\)ΔCKB(g-g)
Suy ra: \(\dfrac{CH}{CK}=\dfrac{CI}{CB}\)
hay \(CH\cdot CB=CK\cdot CI\)