K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2021

undefined

1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}}+\dfrac{\sqrt{x}}{\sqrt{x}+1}\right):\dfrac{\sqrt{x}}{x+\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)

Để \(P=\dfrac{7}{2}\) thì \(2x+2\sqrt{x}+2-7\sqrt{x}=0\)

\(\Leftrightarrow2x-4\sqrt{x}-\sqrt{x}+2=0\)

\(\Leftrightarrow2\sqrt{x}\left(\sqrt{x}-2\right)-\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{1}{4}\end{matrix}\right.\)

a: \(P=\left(\dfrac{2+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\dfrac{\sqrt{x}+1-\sqrt{x}}{\sqrt{x}+1}\)

\(=\dfrac{1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

b: Để P nguyên thì \(\sqrt{x}+1⋮\sqrt{x}-1\)

\(\Leftrightarrow\sqrt{x}-1\in\left\{-1;1;2\right\}\)

hay \(x\in\left\{0;4;9\right\}\)

1, Với \(x\ge0,x\ne1\) ta có :

\(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

   \(=\dfrac{\sqrt{x}+1+\sqrt{x}}{x-1}:\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}-1}\)

   \(=\dfrac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

   \(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2, Ta có \(P=\dfrac{7}{4}\)

          \(\Rightarrow\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)

         \(\Leftrightarrow4\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)

         \(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}=7\)

          \(\Leftrightarrow\sqrt{x}=3\)

          \(\Leftrightarrow x=9\left(tm\right)\)

1) Ta có: \(P=\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{x-1}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-1\right)\)

\(=\left(\dfrac{\sqrt{x}+1+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right):\left(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{\sqrt{x}-1}{\sqrt{x}-1}\right)\)

\(=\dfrac{2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}-1}{\sqrt{x}-\sqrt{x}+1}\)

\(=\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}\)

2) Để \(P=\dfrac{7}{4}\) thì \(\dfrac{2\sqrt{x}+1}{\sqrt{x}+1}=\dfrac{7}{4}\)

\(\Leftrightarrow4\cdot\left(2\sqrt{x}+1\right)=7\left(\sqrt{x}+1\right)\)

\(\Leftrightarrow8\sqrt{x}+4=7\sqrt{x}+7\)

\(\Leftrightarrow8\sqrt{x}-7\sqrt{x}=7-4\)

\(\Leftrightarrow\sqrt{x}=3\)

hay x=9(nhận)

Vậy: Để \(P=\dfrac{7}{4}\) thì x=9

1 tháng 1 2022

a) Điều kiện: \(x\ge0;x\ne1;x\ne\dfrac{1}{4}\)\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt[]{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right).\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\left(\dfrac{2x\sqrt{x}+x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\dfrac{\sqrt{x}}{\sqrt{x}-1}\right).\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{2x\sqrt{x}+x-\sqrt{x}-x\sqrt{x}-x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}.\dfrac{\sqrt{x}-1}{2\sqrt{x}-1}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{2\sqrt{x}-1}\)

\(E=\dfrac{x\sqrt{x}-2\sqrt{x}+x\sqrt{x}+x+\sqrt{x}}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{2x\sqrt{x}-\sqrt{x}+x}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{\sqrt{x}\left(2x+\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(x+\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}\)

\(E=\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\)

b)Vì \(x\ge0\) nên \(x+\sqrt{x}\ge0\) và \(x+\sqrt{x}+1>0\)

Do đó: \(E\ge0\). Dấu "=" xảy ra \(\Leftrightarrow x=0\)

c)\(E\ge\dfrac{6}{7}\Leftrightarrow\dfrac{x+\sqrt{x}}{x+\sqrt{x}+1}\ge\dfrac{6}{7}\Leftrightarrow7x+7\sqrt{x}\ge6x+6\sqrt{x}+6\)

                \(\Leftrightarrow x+\sqrt{x}-6\ge0\Leftrightarrow x-2\sqrt{x}+3\sqrt{x}-6\ge0\)

                 \(\Leftrightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ge0\)

                  \(\Leftrightarrow\sqrt{x}-2\ge0\Leftrightarrow\sqrt{x}\ge2\Leftrightarrow x\ge4\)

AH
Akai Haruma
Giáo viên
31 tháng 5 2023

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 1$

\(P=\frac{x+\sqrt{x}-(x+2)}{\sqrt{x}+1}:\left[\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}+1)(\sqrt{x}-1)}+\frac{\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}\right]\)

\(=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-\sqrt{x}+\sqrt{x}-4}{(\sqrt{x}-1)(\sqrt{x}+1)}\)

\(=\frac{\sqrt{x}-2}{\sqrt{x}+1}:\frac{x-4}{(\sqrt{x}-1)(\sqrt{x}+1)}=\frac{\sqrt{x}-2}{\sqrt{x}+1}.\frac{(\sqrt{x}-1)(\sqrt{x}+1)}{(\sqrt{x}-2)(\sqrt{x}+2)}\)

\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}=1-\frac{3}{\sqrt{x}+2}\)

Với mọi $x\geq 0; x\neq 1$ thì $\sqrt{x}+2\geq 2$

$\Rightarrow \frac{3}{\sqrt{x}+2}\leq \frac{3}{2}$

$\Rightarrow P=1-\frac{3}{\sqrt{x}+2}\geq 1-\frac{3}{2}=\frac{-1}{2}$
Vậy $P_{\min}=\frac{-1}{2}$ khi $x=0$

24 tháng 5 2021

\(P=\left(1+\dfrac{\sqrt{x}}{x+1}\right):\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x\sqrt{x}+\sqrt{x}-x-1}\right)-\dfrac{x\sqrt{x}+1}{x-\sqrt{x}+1}\) đk: \(x\ge0,x\ne1\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}:\left[\dfrac{1}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\sqrt{x}\left(x+1\right)-\left(x+1\right)}\right]-\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{x-\sqrt{x}+1}\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}:\dfrac{\left(x+1\right)-2\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+1\right)}-\left(\sqrt{x}+1\right)\)

\(=\dfrac{x+\sqrt{x}+1}{x+1}.\dfrac{\left(\sqrt{x}-1\right)\left(x+1\right)}{\left(\sqrt{x}-1\right)^2}-\left(\sqrt{x}+1\right)\)

\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{x+\sqrt{x}+1-\left(x-1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\)

b)Để P<4 \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}< 4\) \(\Leftrightarrow\dfrac{\sqrt{x}+2}{\sqrt{x}-1}-4< 0\) \(\Leftrightarrow\dfrac{\sqrt{x}+2-4\left(\sqrt{x}-1\right)}{\sqrt{x}-1}< 0\)

\(\Leftrightarrow\dfrac{6-3\sqrt{x}}{\sqrt{x}-1}< 0\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}6-3\sqrt{x}>0\\\sqrt{x}-1< 0\end{matrix}\right.\\\left\{{}\begin{matrix}6-3\sqrt{x}< 0\\\sqrt{x}-1>0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}\sqrt{x}< 2\\\sqrt{x}< 1\end{matrix}\right.\\\left\{{}\begin{matrix}\sqrt{x}>2\\\sqrt{x}>1\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}< 1\\\sqrt{x}>2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0\le x< 1\\x>4\end{matrix}\right.\)

Vậy...

c)\(P=\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\) \(=1+\dfrac{3}{\sqrt{x}-1}\)

Để P nguyên khi \(\dfrac{3}{\sqrt{x}-1}\) nguyên

\(x\in Z\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}\in Z\\\sqrt{x}\in I\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}-1\in Z\\\sqrt{x}-1\in I\end{matrix}\right.\)

Tại \(\sqrt{x}-1\in I\Rightarrow\dfrac{3}{\sqrt{x}-1}\notin Z\) (L)

Tại\(\sqrt{x}-1\in Z\) .Để \(\dfrac{3}{\sqrt{x}-1}\in Z\)

\(\Leftrightarrow\sqrt{x}-1\inƯ\left(3\right)=\left\{-1;1;-3;3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{0;2;-2;4\right\}\) mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{0;2;4\right\}\) \(\Leftrightarrow x\in\left\{0;4;16\right\}\) (tm)

 

24 tháng 5 2021

câu c là sao vậy ạ??

a: Ta có: \(N=\dfrac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\dfrac{2x+\sqrt{x}}{\sqrt{x}}+\dfrac{2\left(x-1\right)}{\sqrt{x}-1}\)

\(=x-\sqrt{x}-2\sqrt{x}-1+2\sqrt{x}+2\)

\(=x-\sqrt{x}+1\)

2 tháng 9 2021

mình cảm ơn!