Cho tam giác nhọn ABC. Kẻ đường trung tuyến AM lên cạnh BC. Trên cạnh AB lần lượt lấy 2 điểm D và E sao cho AD= DE = EB = 1/3 AB. Chứng minh:
a) EM là đường trung bình của tam giác BDC. Chứng minh: EDCM là hình thang
b) Gọi I là giao điểm của DC với AM. Chứng minh: DIME là hình thang và I là trung điểm AM
a)Ta có \(\begin{cases}BE=ED=\frac{1}{2}BD\\BM=MC\end{cases}\) => ME là đường trung bình của tam giác BDC
=> EM // CD => EMCD là hình thang.
b) Ta chứng minh được ME // CD hay ME // ID (câu a) =>DIME là hình thang
Lại có AD = DE => DI là đường trung bình của tam giác AEM => AI = IM => I là trung điểm AM
Dễ Như Ăn Cháo