Một phân thức có dạng \(\frac{k^2-5k+8}{k^2+6k+19}\) với \(k\in N\). Chứng Minh rằng nếu tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thật vậy, ta có:
x3 + 5x2 – 4x – 20
= x3 + 3x2 – 10x + 2x2 + 6x – 20
= x(x2 + 3x – 10) + 2(x2 + 3x – 10)
= (x + 2)(x2 + 3x – 10)
⇒ x3 + 5x2 – 4x – 20 chia hết cho x2 + 3x – 10
x3 + 5x2 – 4x – 20
= x3 + 7x2 + 10x – 2x2 – 14x – 20
= x(x2 + 7x + 10) – 2.(x2 + 7x + 10)
= (x – 2)(x2 + 7x + 10)
⇒ x3 + 5x2 – 4x – 20 chia hết cho x2 + 7x + 10
Do đó có thể chọn mẫu thức chung là x3 + 5x2 – 4x – 20.
Gợi ý: M = ( a 2 – a – 2)(a + 2) = ( a 2 + 3a + 2)(a – 2).
Do đó, ta có thể quy đồng mẫu thức của hai phân thứ này với mẫu thức chung là M = a 3 + a 2 – 4a – 4.
Lời giải:
Ta có các điều sau:
\(\left\{\begin{matrix} a+b\equiv 0\pmod k\\ c+d\equiv 0\pmod k\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a\equiv -b\pmod k\\ d\equiv-c\pmod k\end{matrix}\right.\)
Áp dụng tính chất nhân của mo- đun:
\(\Rightarrow ad\equiv (-b)(-d)=bd\pmod k\) . Suy ra $ad-bc$ chia hết cho $k$
Do đó ta có đpcm
9a + b + 4c = 3(3a + 4b + 5c) - 11(b + c) = 3*11*N - 11(b + c) = 11*(3*N - b - c) chia hết cho 11
9a+b+4c=3(3a+4b+5c)-11(b+c=3*11*N-11(b-c)=11*(3*N-b-c) chia het co 11
lam dung k minh ngay nhe
Chứng minh tử thức (hoặc mẫu thức) chia hết cho 11 thì mẫu thức (hoặc tử thức) chia hết cho 11 nghĩa là ta chứng minh nếu \(k^2-5k+8\)chia hết cho 11 thì \(k^2+6k+9\)cũng chia hết cho 11 và ngược lại.
Ta có :
\(k^2-5k+8\)chia hết cho 11
Mà \(11k\)chia hết cho 11
\(11\)chia hết cho 11
\(\Rightarrow k^2-5k+8+11k+11\)chia hết cho 11
\(\Rightarrow k^2+6k+19\)chia hết cho 11
Chứng minh ngược lại :
\(k^2+6k+19\)chia hết cho 11
Mà \(11k;11\)chia hết cho 11
\(\Rightarrow k^2+6k+19-11k-11\)chia hết cho 11
\(\Rightarrow k^2-5k+8\)chia hết cho 11
Vậy ...