Bai 1: Tinh :
A= 1-2+3-4+4-5+...+99-100
B = 1.2+2.3+3.4+4.5+...+99.100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Đặt \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
Ta có: \(A=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\)
\(\Leftrightarrow3A=3\cdot\left(1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\right)\)
\(\Leftrightarrow3A=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\)
\(\Leftrightarrow3\cdot A=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-2\cdot3\cdot4+...+98\cdot99\cdot100-98\cdot99\cdot100+99\cdot100\cdot101\)
\(\Leftrightarrow3\cdot A=99\cdot100\cdot101\)
\(\Leftrightarrow A=33\cdot100\cdot101=333300\)
b) Ta có: \(1+2-3-4+...+97+98-99-100\)
\(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(97+98-99-100\right)\)
\(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)
\(=-4\cdot25=-100\)
Bài 2a tại sao 2 số hạng đầu bậc 2 mà các số kia bậc 3 ? Bài 3 vì sao tích đầu là 1.2 mà các tích kia là tích 2 số lẻ vậy?
Mình nghĩ làm được câu 2b sẽ làm được câu 2d,2e vì chúng đều là tổng bình phương các số hạng tăng đều.
Mình ko thể làm các bài trên,trừ bài 2c bạn yukihuynam làm đúng rồi!Sorry nha.
mình làm dc câu c nè:
C=1.2+2.3+3.4+...+99.100
3C=1.2.[3-0]+2.3.[4-1]+.....+99.10
3C=1.2.3+2.3.4-1.2.3+....+99.100.101-98.99.100
3C=99.100.101
3C=999900
C=999900:3
C=333300
ta có \(3S=1\cdot2\cdot3+2\cdot3\cdot3+.....+99\cdot100\cdot3\)
\(3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)....+99\cdot100\cdot\left(101-98\right)\)
\(3S=1\cdot2\cdot3-1\cdot2\cdot3+2\cdot3\cdot4-......-98\cdot99\cdot100+99\cdot100\cdot101\)
\(3S=99.100.101\)
\(S=\frac{99\cdot100\cdot101}{3}\)
S=...
3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3
3S=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+...+99.100.101-98.99.100
3S=99.100.101
S=33.100.101
S=333300
Vậy S=333300
\("!"\) là giai thừa đó bạn ạ .
\(VD:\) \(3!=1.2.3=6\)
\(4!=1.2.3.4=24\)
Bài 1 : Ta có : a = 1.2 + 2.3 + 3.4 + ....... + 99.100
=> 3a = 1.2.(3 - 0) + 2.3.(4 - 1) + 3.4.(5 - 2) + ...... + 99.100.(101 - 98)
=> 3a = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ...... + 99.100.101
=> 3a = 99.100.101
=> a = \(\frac{99.100.101}{3}=333300\)
Đặt S= 1.2 + 2.3 + 3.4 + ...+ 99.100
3S = 1.2.3+2.3.3+3.4.3+...+98.99.3+99.100.3
3S= 1.2.3+2.3(4-1)+3.4(5-2)+...+98.99(100-97)+99.100(101-98)
3S= 1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...-97.98.99+99.100.101-98.99.100
3S = 99.100.101 3S = 3.33.100.101
S=33.100.101= 333300
S = 1.2 + 2.3 + ... + 99.100
4S = 1.2.(3 - 0) + 2.3.(4 - 1) + ... + 99.100.(101 - 98)
4S = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 99.100.101 - 98.99.100
4S = (1.2.3 + 2.3.4 +...+ 99.100.101) - (0.1.2 + 1.2.3 +...+ 98.99.100)
4S = 99.100.101 - 0.1.2
4S = 99.100.101
S = 99.25.101
S = 249975
\(S=1.2+2.3+3.4+4.5+5.6+...+99.100\)
\(3S=1.2.3+2.3.3+3.4.3+4.5.3+...+99.100.3\)
\(3S=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+4.5.\left(6-3\right)+...+99.100.\left(101-98\right)\)\(1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101+98.99.100\)
\(3S=\left(1.2.3-1.2.3\right)+\left(2.3.4-2.3.4\right)+...+\left(98.99.100-98.99.100\right)+99.100.101\)
\(3S=99.100.101=9999000\)
\(S=9999000:3=3333000\)
\(\Rightarrow S=3333000\)
A= 1-2+3-4+4-5+...+99-100
A = ( 1 - 2 ) + ( 2 - 3 ) + ....+ ( 99 - 100 )
A = ( - 1 ) + ( - 1 ) +....+ ( - 1 )
A = ( - 1 ) . 50
A = - 50
B = 1.2 + 2.3 + 3.4 + 4.5 +...+ 99.100
Nhân cả 2 vế với 3, ta được:
3A=1.2.3+ 2.3.3+ 3.4.3+ 4.5.3+...... 99.100.3
= 1.2.3 + 2.3(4-1) + 3.4.(5-2) +...+ 99.100.(101-98)
= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5-2.3.4 +...+ 99.100.101-98.99.100
= 99.100.101
=) B = (99.100.101) :3
B = 333300
Vậy B= 333300
A= 1-2+3-4+4-5+...+99-100
A = (1-2) + (3-4) + (4-5) + ... + (99-100)
A = (-1) + (-1) + (-1) + ...+ (-1)
A = (-1).50
A = 1