Tìm 2 số tự nhiên, biết rằng tổng của chúng bằng 84, ƯCLN của chúng bằng 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi 2 số phải tìm là `a` và `b` `(a,b in ZZ)`
- Giả sử `a>=b`
- Vì UCLN(a,b)=6
$\Rightarrow \begin{cases} a=6m\\b=6n\end{cases}$
`(m,n in ZZ; UCLN(m,n)=1,m>=n)`
- Theo đề bài ta có : `a+b=84`
`=> 6m+6n=84`
`=> 6(m+n)=84`
`=> m+n=14`
- Chọn m và n nguyên tố cùng nhau, `m>=n` và `m+n=14` ta được các cặp số `(m,n)` là : `(13,1);(11,3);(9,5)`
+ Với `(m,n)=(13,1)` thì :
$\begin{cases} a=6.13=78\\b=6.1=6\end{cases}$
+ Với `(m,n)=(11,3)` thì :
$\begin{cases} a=6.11=66\\b=6.3=18\end{cases}$
+ Với `(m,n)=(9,5)` thì :
$\begin{cases} a=6.9=54\\b=6.5=30\end{cases}$
- Vậy ta tìm được các cặp số thỏa mãn :
+ 78 và 6
+ 66 và 18
+ 54 và 30
a, Gọi hai số tự nhiên cần tìm là a và b
Ta có : \(a=6.k_1;b=6.k_2\)
Trong đó : \(ƯCLN\left(k_1,k_2\right)=1\)
Mà : \(a+b=84\Rightarrow6.k_1+6.k_2=84\)
\(\Rightarrow6\left(k_1+k_2\right)=84\Rightarrow k_1+k_2=84\div6=14\)
+) Nếu : \(k_1=1\Rightarrow k_2=13\Rightarrow\begin{cases}a=6\\b=78\end{cases}\)
+)Nếu : \(k_1=3\Rightarrow k_2=11\Rightarrow\begin{cases}a=18\\b=66\end{cases}\)
+)Nếu : \(k_1=5\Rightarrow k_2=9\Rightarrow\begin{cases}a=30\\b=54\end{cases}\)
Vậy ...
b, Tương tự câu a,
c, Gọi hai số tự nhiên cần tìm là a và b
Vì : \(ƯCLN\left(a,b\right)=10;BCNN\left(a,b\right)=900\)
\(\RightarrowƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b=900.10=9000\)
Phần còn lại giống câu a và câu b tự làm
Gọi 2 số tự nhiên đó là a và b.
Do ƯCLN(a;b) = 12 => a = 12m ; b = 12n (với m,n là 2 số nguyên tố cùng nhau)
Ta có : a - b = 12(m - n) = 84
=> m - n = 7
Mà m,n nguyên tố cùng nhau và ƯCLN(12m; 12n) = 1 => m = 8 ; n = 1
=> a = 96 ; b = 12
Vậy 2 số cần tìm là 96 và 12
a+b=84 (a<b; a,b thuộc N*)
UCLN(a,b)=6 =>
{a=6m
{b=6m
(m,n)=1 và m,n thuộc N*
a+b=84 => 6m+6n=84 => m+n=14
*m=1=> n=13 => a=6, b=78
*m=3=> n=11 => a=18, b=66
*m=5 => n=9 => a= 30, b=54
Vậy (a,b) = (6,78); (18,66); (30,54)
UCLN(36,48)=12 nha
Gọi hai số cần tìm là a và b. Giả sử a \(\le\) b. Ta có :
ƯCLN(a ; b) = 6 \(\Rightarrow\) a = 6m và b = 6n (m,n \(\in\) N* và m \(\ge\) n ; m,n nguyên tố cùng nhau)
Do đó a + b = 6m + 6n = 6.(m + n) = 84
\(\Rightarrow\) m + n = 14. Vì m \(\ge\) n và m,n \(\in\) N* và m,n nguyên tố cùng nhau nên ta có bảng sau :
m | 13 | 11 | 9 | ||||
a | 78 | 66 | 54 | ||||
n | 1 | 3 | 5 | ||||
b | 6 | 18 | 30 |
Vậy (a;b) \(\in\) {(78;6);(66;18);(54;30)}
a) n=7k+1 ( \(k\in N\))
b) 18 va 66 hoac 6 va 78 hoac 30 va 54
c) 15 va 20 hoac 5 va 60
d) 10 va 900 hoac 20 va 450 hoac 180 va 50 hoac 100 va 90
Gọi hai số cần tìm là a và b. Giả sử a ≤ b. Ta có :
ƯCLN(a ; b) = 6 ⇒ a = 6m và b = 6n (m,n ∈ N* và m ≥ n ; m,n nguyên tố cùng nhau)
Do đó a + b = 6m + 6n = 6.(m + n) = 84
⇒ m + n = 14. Vì m ≥ n và m,n ∈ N* và m,n nguyên tố cùng nhau : " Đến đây bạn tự kẻ bảng nha "
Vậy (a;b) ∈ {(78;6);(66;18);(54;30)}
tk cho mk nha
Gọi hai số đó là : a và b
Vì ƯCLN ( a , b ) = 6
=> a = 6x ; b = 6y ; ( x , y ) = 1
Mà a + b = 84
Thay a = 6x ; b = 6y vào a + b = 84 ta được
6x + 6y = 84
6 . ( x + y ) = 84
x + y = 84 : 6
x + y = 14
Mà ( x , y ) = 1 => ( x , y ) = ( 1 ; 13 ) ; ( 13 ; 1 ) ; ( 11 ; 3 ) ; ( 3 ; 11 ) ; ( 5 ; 9 ) ; ( 9 ; 5 )
x | 1 | 13 | 11 | 3 | 5 | 9 |
a | 6 | 78 | 66 | 18 | 30 | 54 |
y | 13 | 1 | 3 | 11 | 9 | 5 |
b | 78 | 6 | 18 | 66 | 54 | 30 |
Gọi hai số phải tìm là a và b ( a < b ). Ta có ( a,b ) = 6 nên a = 6a', b = 6b' trong đó ( a' b' ) = 1 ( a,b, a', b' \(\in\) N ).
Do a + b = 84 nên 6(a' + b' ) = 84 suy ra a' + b' = 14.
Chọn cặp số a' , b' nguyên tố cùng nhau có tổng bằng 14 ( a' < b' ), ta được
Do đó
a+b=84 (a<b; a,b thuộc N*)
UCLN(a,b)=6 => {a=6m {b=6m
(m,n)=1 và m,n thuộc N*
a+b=84 => 6m+6n=84 => m+n=14
*m=1=> n=13 => a=6, b=78
*m=3=> n=11 => a=18, b=66
*m=5 => n=9 => a= 30, b=54
Vậy (a,b) = (6,78); (18,66); (30,54)