không dùng máy tính, hãy tính giá trị biểu thức:
\(sin200^0.sin310^0+\cos340^0.\cos50^0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(sin20^o+2sin40^o-sin100^o=sin20^o-sin100^o+2sin40^o\)
\(=2cos60^osin\left(-40^o\right)+2sin40^o\)\(=-2cos60^osin40^o+2sin40^o\)
\(=2sin40^o\left(-cos60^o+1\right)=2sin40^o.\left(-\dfrac{1}{2}+1\right)=sin40^o\)(đpcm).
b) \(\dfrac{sin\left(45^o+\alpha\right)-cos\left(45^o+\alpha\right)}{sin\left(45^o+\alpha\right)+cos\left(45^o+\alpha\right)}\)
\(=\dfrac{sin\left(45^o+\alpha\right)-sin\left(45^o-\alpha\right)}{sin\left(45^o+\alpha\right)+sin\left(45^o-\alpha\right)}=\dfrac{2cos45^o.sin\alpha}{2sin45^o.cos\alpha}\)
\(=tan\alpha\) (Đpcm).
Chú ý rằng: sin450 = cos450, sin400 = cos500, sin500 = cos400
Ta được:
\(\dfrac{\cos50^0-\cos45^0+\cos50^0}{\cos40^0-\cos45^0+\cos50^0}-\dfrac{6\times3\left(\dfrac{\sqrt{3}}{3}+\tan15^0\right)}{3\left(1-\dfrac{\sqrt{3}}{3}\tan15^0\right)}\)
\(=1-6\left(\dfrac{\tan30^0+\tan15^0}{1-\tan30^0\times\tan15^0}\right)\)
\(=1-6\tan45^0=-5\)
Bài 1:
b: \(\cos\alpha=\sqrt{1-\left(\dfrac{3}{5}\right)^2}=\dfrac{4}{5}\)
\(\tan\alpha=\dfrac{3}{5}:\dfrac{4}{5}=\dfrac{3}{4}\)
Bài 2:
\(\sqrt{ab}< =\dfrac{a+b}{2}\)
\(\Leftrightarrow a+b>=2\sqrt{ab}\)
\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng)
a) \(\sin220^0< \sin10^0< \sin40^0< \sin90^0\)
b) \(\cos138^0< \cos90^0< \cos15^0< \cos0^0\)
1. Theo hệ thức Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{4}{3}\\x_1.x_2=\dfrac{1}{3}\end{matrix}\right.\)
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_1-1\right)\left(x_2-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_1-x_2+1}=\dfrac{\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}=\dfrac{\dfrac{22}{9}}{\dfrac{8}{3}}=\dfrac{11}{12}\)
\(1,3x^2+4x+1=0\)
Do pt có 2 nghiệm \(x_1,x_2\) nên theo đ/l Vi-ét ta có :
\(\left\{{}\begin{matrix}S=x_1+x_2=\dfrac{-b}{a}=-\dfrac{4}{3}\\P=x_1x_2=\dfrac{c}{a}=\dfrac{1}{3}\end{matrix}\right.\)
Ta có :
\(C=\dfrac{x_1}{x_2-1}+\dfrac{x_2}{x_1-1}\)
\(=\dfrac{x_1\left(x_1-1\right)+x_2\left(x_2-1\right)}{\left(x_2-1\right)\left(x_1-1\right)}\)
\(=\dfrac{x_1^2-x_1+x_2^2-x_2}{x_1x_2-x_2-x_1+1}\)
\(=\dfrac{\left(x_1^2+x_2^2\right)-\left(x_1+x_2\right)}{x_1x_2-\left(x_1+x_2\right)+1}\)
\(=\dfrac{S^2-2P-S}{P-S+1}\)
\(=\dfrac{\left(-\dfrac{4}{3}\right)^2-2.\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)}{\dfrac{1}{3}-\left(-\dfrac{4}{3}\right)+1}\)
\(=\dfrac{11}{12}\)
Vậy \(C=\dfrac{11}{12}\)
a: \(\sin25^0< \sin70^0\)
b: \(\cos40^0>\cos75^0\)
c: \(\sin38^0=\cos52^0< \cos27^0\)
d: \(\sin50^0=\cos40^0>\cos50^0\)