Cho ngũ giác ABCDE. Chứng minh vectơ AB + vecto BC + vecto CB = vecto AE - vecto DE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a) Ta có:
\(\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{BC}+\overrightarrow{DE}=(\overrightarrow{AB}+\overrightarrow{BC})+(\overrightarrow{CD}+\overrightarrow{DE})\)
\(=\overrightarrow{AC}+\overrightarrow{CE}=\overrightarrow{AE}\)
\(\Rightarrow \overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AE}-\overrightarrow{BC}-\overrightarrow{DE}\) (đpcm)
b)
\(\overrightarrow {AB}+\overrightarrow{DC}+\overrightarrow{BE}+\overrightarrow{ED}=(\overrightarrow{AB}+\overrightarrow{BE})+(\overrightarrow{ED}+\overrightarrow{DC})\)
\(=\overrightarrow{AE}+\overrightarrow{EC}=\overrightarrow{AC}\)
\(\Rightarrow \overrightarrow{AB}=\overrightarrow{AC}-\overrightarrow{DC}-\overrightarrow{BE}-\overrightarrow{ED}\) (đpcm)
Chưa đủ dữ kiện đề bài để chứng minh đẳng thức. Bạn xem lại đề.