Tính giá trị của biểu thức C = \(\frac{2x^3-5x+3}{2x-1}\) tại x = I \(\frac{3}{2}\) I
(( Cái I 3/2 I là giá trị tuyệt đối của 3/2 nhé , 3 phần 2 ấy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay x=|3/2\ vào C ta có
C=\(2\left|\frac{3}{2}\right|^2-5\left|\frac{3}{2}\right|+\frac{3}{2.\left|\frac{3}{2}\right|-1}\)
C=\(\frac{2.9}{4}-\frac{15}{2}+\frac{3}{2}\)
C=\(\frac{9}{2}-\frac{15}{2}+\frac{3}{2}=-\frac{3}{2}\)
Lê Tuấn Nghĩa có vẻ như bạn có gì đó sai sai thì phải!Sách nâng cao của mình hướng dẫn bài này là phải áp dụng định nghĩa: \(\left|x\right|=\hept{\begin{cases}x..if..x\ge0\\-x..if..x< 0\end{cases}}\) chứ!Khi đó lời giải như sau: (mình giải sơ thôi nhé,bận rồi)
Với \(x\ge0\Rightarrow\left|x\right|=\frac{3}{2}\Leftrightarrow x=\frac{3}{2}\).Thay vào tính C
Với \(x< 0\Rightarrow\left|x\right|=\frac{3}{2}\Leftrightarrow x=-\frac{3}{2}\).Thay vào tính C
Do đó ta sẽ có hai kết quả ...
b) Thay x=-1 vào biểu thức \(B=\dfrac{2x^2+5x+4}{x^2-4x+3}\), ta được:
\(B=\dfrac{2\cdot\left(-1\right)^2+5\cdot\left(-1\right)+4}{\left(-1\right)^2-4\cdot\left(-1\right)+3}=\dfrac{2\cdot1-5+4}{1+4+3}=\dfrac{1}{8}\)
Vậy: Khi x=-1 thì \(B=\dfrac{1}{8}\)
Ta có:
|x| = \(\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{1}{3};x=-\dfrac{1}{3}\)
bài 1:
a. \((x+1)(x+3) - x(x+2)=7 \)
\(x^2+ 3x +x +3 - x^2 -2x =7\)
\(x^2+4x+3-x^2-2x=7\)
\(=> 2x+3=7\)
\(2x=4\)
\(x = 2\)
Bài 2:
a)
\((3x-5)(2x+11) -(2x+3)(3x+7) \)
\(= 6x^2 +33x-10x-55-6x^2-14x-9x-10\)
\(= (6x^2-6x^2)+(33x-10x-14x-9x)-(55+10)\)
\(=-65\)
\(\)
1) \(\left(x-2\right)\left(\frac{x+1}{3}-x+1\right)=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+x-\frac{2\left(x+1\right)}{3}+2x-2=0\)
\(\Leftrightarrow\frac{x\left(x+1\right)}{3}-x^2+3x-\frac{2\left(x+1\right)}{3}-2=0\)
\(\Leftrightarrow x\left(x+1\right)-3x^2+9x-2\left(x+1\right)-6=0\)
\(\Leftrightarrow x^2+x-3x^2+9x-2x-2-6=0\)
\(\Leftrightarrow-2x^2+8x-8=0\)
\(\Leftrightarrow-2\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow-2.\left(x^2-2.x.2+2^2\right)=0\)
\(\Leftrightarrow-2\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy nghiệm của phương trình là: {2}
2) \(\left(3x+4x\right)\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)
\(\Leftrightarrow7x\left(\frac{x}{2}-x-\frac{3x}{5}+1\right)=0\)
\(\Leftrightarrow7x\left(-\frac{11x}{10}+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}7x=0\\-\frac{11x}{10}=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{11}{10}\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{10}{11}\end{cases}}\)
Vậy: nghiệm của phương trình là: \(\left\{0;\frac{10}{11}\right\}\)
3) \(\left|x-1\right|=x^2-x\)
\(\Leftrightarrow x-1=x^2-x\)
\(\Leftrightarrow1=x^2-x-x\)
\(\Leftrightarrow1=x^2\)
\(\Leftrightarrow x^2=1\)
\(\Rightarrow x=\pm1\)
Vậy nghiệm phương trình là: {1; -1}
4) \(\left|x^2-3x+1\right|=2x-3\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-3x+1=2x-3\\x^2-3x+1=-\left(2x-3\right)\end{cases}}\)
Xét trường hợp này rồi làm tiếp, dễ rồi :))
\(C=\frac{2x^3-5x+3}{2x-1}=\frac{\left(2x^3-2x\right)-\left(3x-3\right)}{2x-1}=\frac{2x\left(x^2-1\right)-3\left(x-1\right)}{2x-1}\)
\(=\frac{2x\left(x-1\right)\left(x+1\right)-3\left(x-1\right)}{2x-1}=\frac{\left(x-1\right)\left(2x^2+2x-3\right)}{2x-1}\)
Có: \(x=\left|\frac{3}{2}\right|=\frac{3}{2}\) thì
\(C=\frac{\left(\frac{3}{2}-1\right)\left(2\cdot\frac{3^2}{2^2}+2\cdot\frac{3}{2}-3\right)}{2\cdot\frac{3}{2}-1}=\frac{\frac{1}{2}\cdot\frac{9}{2}}{2}=\frac{9}{4}\cdot\frac{1}{2}=\frac{9}{8}\)
Tớ không hiểu cái phép tính đầu tiên ..