K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2016

hai tam giác EAD = BAC  ( c - g -c) 

=> góc DEA = CBA 

tam giác EAB đông dạng CAD (c - g - c) 
=> goc AEB = ACD 
=> EB // CD
lại có BED = BEA + AED 
góc EBC = EBA + ABC 

mà góc BEA = EBA ( tam giác BAE cân taịA) 

AED = ABC (cmt) 

=> BCDE la hinh thang can

11 tháng 6 2018

Hình:

A B C D E

Giải:

Ta có:

\(AB+AD=AC+AE\) (Vì \(AB=AE;AC=AD\))

\(\Leftrightarrow BD=CE\)

=> Tứ giác BCDE là hình thang (vì trong hình thang hai đường chéo bằng nhau)

Vậy tứ giác BCDE là hình thang (đpcm)

14 tháng 8 2019

Hình tự vẽ nha )

Ta có : AB = AE ( gt ) 

            AD = AC ( gt ) 

Do đó : AB + AD = AC + AE

        => BD = EC 

        => Tứ giác BDEC là hình thang ( vì trong hình thang có hai đường chéo bàng nhau ) 


 

16 tháng 11 2021

Xét tứ giác BCDE có 

A là trung điểm của EC

A là trung điểm của BD

Do đó: BCDE là hình bình hành

mà \(\widehat{EDC}=90^0\)

nên BCDE là hình chữ nhật

8 tháng 10 2022

Ủa sao góc D bằng 90° vậy

Xét tứ giác BCDE có 

A là trung điểm của BD

A là trung điểm của CE

Do đó: BCDE là hình bình hành

6 tháng 10 2021

Vì A là trung điểm của BD và CE nên BCDE là hbh

6 tháng 10 2021

sai r

30 tháng 9 2019
Giúp mik với mik cần thank
30 tháng 9 2019

Đề bài bị sai

Đề đúng: Gọi M, N, P, Q theo thứ tự là trung điểm của các đoạn thẳng BE; AD; AC; AB.

Bài giải:

A B C D E N M Q P

a) \(\Delta\)ABC đều

=> ^BAC = 60 độ 

mà ^ EAD = ^BAC ( đối đỉnh)

=> ^EAD = 60 độ 

Xét \(\Delta\) EAD có ^EAD = 60 độ và AE = AD 

=> \(\Delta\)EAD đều

=> ^EDA  = ^ABC (= 60 độ )  mà hai góc này ở vị trí so le trong 

=> ED//BC  (1)

Xét \(\Delta\) EAB và \(\Delta\)DAC có:

AE = AD ;

^ EAB = ^DAC ( đối đỉnh)

AB = AC

=> \(\Delta\)EAB = \(\Delta\)DAC

=> ^BEA = ^CDA 

mà ^ AED = ^ ADE ( \(\Delta\)AED đều )

=> ^ BEA + ^AED = ^CDA + ^DAC 

=> ^BED = ^CDA  (2)

Từ (1) ; (2) => Tứ giác BEDC là hình thang cân.

b) ED // BC ( theo 1)

=> \(\frac{AE}{AC}=\frac{AD}{AB}=\frac{2AN}{2AQ}=\frac{AN}{AQ}\)

=> \(\frac{AE}{AC}=\frac{AN}{AQ}\)

=> EN//CQ

=> CNEQ là hình thang.