M = \(\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right)\div\left(x-2+\frac{10-x^2}{x+2}\right)\)
a) Tìm Tập xác định
b) Rút gọn M
c) Tìm M khi \(\left|x\right|\) = \(\frac{1}{2}\)
d) Tìm \(x\in Z\) để \(M\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left[\left(1+\frac{1}{x^2}\right)\div\left(1+2x+x^2\right)+\frac{2}{\left(x+1\right)^3}\times\left(1+\frac{1}{x}\right)\right]\div\frac{x-1}{x^3}\)
\(=\left[\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{2}{\left(x+1\right)^3}\times\frac{x+1}{x}\right]\div\frac{x-1}{x^3}\)
\(=\left(\frac{x^2+1}{x^2}\times\frac{1}{\left(x+1\right)^2}+\frac{1}{\left(x+1\right)^2}\times\frac{2}{x}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\left(\frac{x^2+1}{x^2}+\frac{2}{x}\right)\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x^3+2x^2+x}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x^2+2x+1\right)}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\left(\frac{1}{\left(x+1\right)^2}\times\frac{x\left(x+1\right)^2}{x^3}\right)\div\frac{x-1}{x^3}\)
\(=\frac{1}{x^2}\times\frac{x^3}{x-1}\)
\(=\frac{x}{x-1}\)
\(A=\left(\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}+\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}\right):\dfrac{x-1}{x^3}\)
\(=\dfrac{x^2+3}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}=\dfrac{x\left(x^2+3\right)}{\left(x-1\right)\left(x+1\right)^2}\)
\(A=\left(\frac{x+1}{2x-2}-\frac{3}{1-x^2}-\frac{x+3}{2x+2}\right):\frac{4}{4x^2-4}\)
\(=\left(\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+2\right)}+\frac{6}{2.\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right):\frac{4}{4\left(x-1\right)\left(x+1\right)}\)
\(=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}.\left(x-1\right)\left(x+1\right)=\frac{4}{2}=2\)
ĐK: x khác 1 ; -1
\(B=\frac{1}{x-1}-\frac{x^3-x}{x^2+1}.\left(\frac{1}{1-2x+x^2}+\frac{1}{1-x^2}\right)\)
\(=\frac{1}{x-1}-\frac{x^3-x}{x^2+1}.\left(\frac{1+x}{\left(1-x\right)^2\left(1+x\right)}+\frac{1-x}{\left(1-x\right)^2\left(1+x\right)}\right)\)
=\(\frac{1}{x-1}-\frac{x\left(x-1\right)\left(x+1\right)}{x^2+1}.\frac{2}{\left(1-x\right)^2\left(1+x\right)}=\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(1-x\right)}\)
\(=\frac{x^2+1}{\left(x^2+1\right)\left(x-1\right)}+\frac{2x}{\left(x^2+1\right)\left(x-1\right)}=\frac{x^2+2x+1}{\left(x^2+1\right)\left(x-1\right)}=\)
a)ĐKXĐ:x>=0;x khác 9
A=[\(\frac{\sqrt{x}}{\sqrt{x}-3}\) - \(\frac{3\sqrt{x}+9}{x-9}\)+ \(\frac{2\sqrt{x}}{\sqrt{x}+3}\)] \(\div\) [\(\frac{2\sqrt{x}-2}{\sqrt{x}-3}\)-1]
A=[\(\frac{\sqrt{x}\left(\sqrt{x}-3\right)-3\sqrt{x}-9+2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}\)] \(\div\) [\(\frac{\left(2\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-x+9}{x-9}\)]
A=[\(\frac{3x-12\sqrt{x}-9}{x-9}\)].[\(\frac{x-9}{x-4\sqrt{x}+3}\)]
A=\(\frac{3x-12\sqrt{x}-9}{x-4\sqrt{x}+3}\)
\(a,ĐKXĐ:x\ne\pm1;x\ne-\frac{1}{2}\)
\(b,A=\left(\frac{1}{x+1}-\frac{2}{x-1}-\frac{x+5}{1-x^2}\right):\frac{2x+1}{x^2-1}\)
\(A=\left[\frac{x-1}{\left(x+1\right)\left(x-1\right)}-\frac{2\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{x+5}{\left(x+1\right)\left(x-1\right)}\right]:\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\)
\(A=\left[\frac{x-1-2x-2+x+5}{\left(x+1\right)\left(x-1\right)}\right]:\frac{2x+1}{\left(x+1\right)\left(x-1\right)}\)
\(A=\frac{2}{\left(x+1\right)\left(x-1\right)}.\frac{\left(x+1\right)\left(x-1\right)}{2x+1}\)
\(A=\frac{2}{2x+1}\)
\(c,Để:A>0\)
\(\Rightarrow2x+1>0\)
\(\Rightarrow x>-\frac{1}{2}\)
\(Để:A< 0\)
\(\Rightarrow2x+1< 0\)
\(\Rightarrow x< -\frac{1}{2}\)
Vậy \(x>-\frac{1}{2}\) và \(x\ne1\) thì A>0
\(x< -\frac{1}{2}\) và \(x\ne-1\) thì A<0
a: \(A=\left(x^2+x+1-x\right):\dfrac{1-x^2}{\left(1-x\right)-x^2\left(1-x\right)}\)
\(=\left(x^2+1\right)\cdot\left(1-x\right)\)
b: Để A<0 thì 1-x<0
=>x>1
c: |x-4|=5
=>x-4=5 hoặc x-4=-5
=>x=9(nhận) hoặc x=-1(loại)
Thay x=9 vào A, ta được:
\(A=\left(9^2+1\right)\left(1-9\right)=82\cdot\left(-8\right)=-656\)
a: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
b: \(M=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x+2}\right):\dfrac{x^2-4+10-x^2}{x+2}\)
\(=\dfrac{x-2x-4+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{6}\)
\(=\dfrac{-1}{x-2}\)
d: Để M nguyên thì \(x-2\in\left\{1;-1\right\}\)
hay \(x\in\left\{3;1\right\}\)