K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2020

\(a\text{) }sin^3x+cos^3x=sinx+cosx\\ \Leftrightarrow\left(sinx+cosx\right)\left(sin^2x-sinx\cdot cosx+cos^2x\right)=sinx+cosx\\ \Leftrightarrow-\frac{1}{2}sin2x\left(sinx+cosx\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}sinx=-cosx=sin\left(x-\frac{\pi}{2}\right)\\sin2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{2}-x+a2\pi\\2x=b\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\frac{3\pi}{4}+a\pi\\x=\frac{b\pi}{2}\end{matrix}\right.\)

\(\text{b) }sin^3x+2sin^2x\cdot cosx-3cos^3x=0\\ \Leftrightarrow\left(sin^3x-cos^3x\right)+2cosx\cdot\left(sin^2x-cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(sinx\cdot cosx+1\right)+\left(sinx-cosx\right)\left(2sinx\cdot cosx+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(3sinx\cdot cosx+1+2cos^2x\right)=0\\ \Leftrightarrow\left(sinx-cosx\right)\left(\frac{3}{2}sin2x+2+cos2x\right)=0\)

Với \(sinx-cosx=0\)

\(\Leftrightarrow sinx=cosx=sin\left(\frac{\pi}{2}-x\right)\\ \Leftrightarrow x=\frac{\pi}{2}-x+a2\pi\\ \Leftrightarrow x=\frac{\pi}{4}+a\pi\)

Với \(\frac{3}{2}sin2x+2+cos2x=0\)

\(\Leftrightarrow sin^22x+\left(\frac{3}{2}sin2x+2\right)^2=1\left(VN\right)\)

29 tháng 7 2020

\(\text{c) }3cos^4x-4cos^2x\cdot sin^2x-sin^4x=0\)

Nhận thấy sinx=0 không là nghiệm pt.

Chia cả 2 vế cho sin4x ta được

\(pt\Leftrightarrow\frac{3cos^4x}{sin^4x}-\frac{4cos^2x}{sin^2x}-1=0\\ \Leftrightarrow3cot^4x-4cot^2x-1=0\\ \Leftrightarrow cot^2x=\frac{2+\sqrt{7}}{3}\\ \Leftrightarrow cotx=\pm\sqrt{\frac{2+\sqrt{7}}{3}}\\ \Leftrightarrow x=arccot\left(\pm\sqrt{\frac{2+\sqrt{7}}{3}}\right)+k2\pi\)

d) kiểm tra đề.

24 tháng 9 2019
https://i.imgur.com/yhrE4YZ.jpg
NV
29 tháng 9 2020

d.

Nhận thấy \(cosx=0\) ko phải nghiệm, chia 2 vế cho \(cos^4x\)

\(tan^4x-3tan^2x-4tanx-3=0\)

\(\Leftrightarrow\left(tan^2x+tanx+1\right)\left(tan^2x-tanx-3\right)=0\)

\(\Leftrightarrow tan^2x-tanx-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}tanx=\frac{1-\sqrt{13}}{2}\\tanx=\frac{1+\sqrt{13}}{2}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(\frac{1-\sqrt{13}}{2}\right)+k\pi\\x=arctan\left(\frac{1+\sqrt{13}}{2}\right)+k\pi\end{matrix}\right.\)

28 tháng 9 2020

mọi người giúp hộ mình nhanh với

5 tháng 9 2021

a, (sinx + cosx)(1 - sinx . cosx) = (cosx - sinx)(cosx + sinx)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx-sinx=1-sinx.cosx\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\cosx+sinx.cosx-1-sinx=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sinx+cosx=0\\\left(cosx-1\right)\left(sinx+1\right)=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x+\dfrac{\pi}{4}\right)=0\\cosx=1\\sinx=-1\end{matrix}\right.\)

b, (sinx + cosx)(1 - sinx . cosx) = 2sin2x + sinx + cosx

⇔ (sinx + cosx)(1 - sinx.cosx - 1) = 2sin2x

⇔ (sinx + cosx).(- sinx . cosx) = 2sin2x

⇔ 4sin2x + (sinx + cosx) . sin2x = 0

⇔ \(\left[{}\begin{matrix}sin2x=0\\\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)+4=0\end{matrix}\right.\)

⇔ sin2x = 0

c, 2cos3x = sin3x

⇔ 2cos3x = 3sinx - 4sin3x

⇔ 4sin3x + 2cos3x - 3sinx(sin2x + cos2x) = 0

⇔ sin3x + 2cos3x - 3sinx.cos2x = 0

Xét cosx = 0 : thay vào phương trình ta được sinx = 0. Không có cung x nào có cả cos và sin = 0 nên cosx = 0 không thỏa mãn phương trình

Xét cosx ≠ 0 chia cả 2 vế cho cos3x ta được : 

tan3x + 2 - 3tanx = 0

⇔ \(\left[{}\begin{matrix}tanx=1\\tanx=-2\end{matrix}\right.\)

d, cos2x - \(\sqrt{3}sin2x\) = 1 + sin2x

⇔ cos2x - sin2x - \(\sqrt{3}sin2x\) = 1

⇔ cos2x - \(\sqrt{3}sin2x\) = 1

⇔ \(2cos\left(2x+\dfrac{\pi}{3}\right)=1\)

⇔ \(cos\left(2x+\dfrac{\pi}{3}\right)=\dfrac{1}{2}=cos\dfrac{\pi}{3}\)

e, cos3x + sin3x = 2cos5x + 2sin5x

⇔ cos3x (1 - 2cos2x) + sin3x (1 - 2sin2x) = 0

⇔ cos3x . (- cos2x) + sin3x . cos2x = 0

⇔ \(\left[{}\begin{matrix}sin^3x=cos^3x\\cos2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}sinx=cosx\\cos2x=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}sin\left(x-\dfrac{\pi}{4}\right)=0\\cos2x=0\end{matrix}\right.\)

NV
30 tháng 7 2021

\(\Leftrightarrow\left(sinx+cosx\right)\left(1-sinx.cosx\right)+1=3sinx.cosx\)

Đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)

\(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\dfrac{t^2-1}{2}\)

Phương trình trở thành:

\(t\left(1-\dfrac{t^2-1}{2}\right)+1=\dfrac{3}{2}\left(t^2-1\right)\)

\(\Leftrightarrow t^3+3t^2-3t-5=0\)

\(\Leftrightarrow\left(t+1\right)\left(t^2+2t-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=-1\\t=-1-\sqrt{6}\left(loại\right)\\t=-1+\sqrt{6}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\\x+\dfrac{\pi}{4}=\dfrac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow...\)

1 tháng 8 2019

Em ms hok cái này nên ko chắc lắm ạ :))

a/ \(\Leftrightarrow2\sin^2x.\cos x+3\sin x-4\sin^3x-4\cos^3x=0\)

Xét \(\sin^3x=0\) ko phải là nghiệm của PT

Xét \(\sin^3x\ne0\)

\(\Leftrightarrow2.\cot x+\frac{3}{\sin^2x}-4-4.\cot^3x=0\)

\(\Leftrightarrow4\cot^3x-3\cot^2x-2\cot x+1=0\)

Sau đó chị giải nghiệm là xong, thú thật e kém về phần gpt b3 trở lên nên sợ sai lắm :))

câu b khá là dài vì phải phân tích cos^3 2x nên ngày mai e giải nốt ạ :))

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

a)

\(4\sin (3x+\frac{\pi}{3})-2=0\Leftrightarrow \sin (3x+\frac{\pi}{3})=\frac{1}{2}=\sin (\frac{\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 3x+\frac{\pi}{3}=\frac{\pi}{6}+2k\pi \\ 3x+\frac{\pi}{3}=\pi-\frac{\pi}{6}+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-\pi}{18}+\frac{2\pi}{3}\\ x=\frac{\pi}{6}+\frac{2\pi}{3}\end{matrix}\right.\) (k nguyên)

c)

\(\sin (x+\frac{x}{4})-1=0\Leftrightarrow \sin (\frac{5}{4}x)=1=\sin (\frac{\pi}{2})\)

\(\Rightarrow \frac{5}{4}x=\frac{\pi}{2}+2k\pi\Rightarrow x=\frac{2}{5}\pi+\frac{8}{5}k\pi \) (k nguyên)

d)

\(2\sin (2x+70^0)+1=0\Leftrightarrow \sin (2x+\frac{7}{18}\pi)=-\frac{1}{2}=\sin (\frac{-\pi}{6})\)

\(\Rightarrow \left[\begin{matrix} 2x+\frac{7}{18}\pi=\frac{-\pi}{6}+2k\pi\\ 2x+\frac{7}{18}\pi=\frac{7}{6}\pi+2k\pi\end{matrix}\right.\)

\(\Leftrightarrow \left[\begin{matrix} x=\frac{-5\pi}{18}+k\pi\\ x=\frac{7}{18}\pi+k\pi\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2019

f)

\(\cos 2x-\cos 4x=0\)

\(\Leftrightarrow \cos 2x=\cos 4x\Rightarrow \left[\begin{matrix} 4x=2x+2k\pi\\ 4x=-2x+2k\pi\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=k\pi\\ x=\frac{k}{3}\pi \end{matrix}\right.\) ( k nguyên)

b,e,g bạn xem lại đề, đơn vị không thống nhất.

4 tháng 10 2020

mik lm biếng quá mik chỉ nói cách làm thôi nha bạn

1) chia hai vế cho cos^2(x) \(\sqrt{3}tan^2x+\left(1-\sqrt{3}\right)tanx-1+\left(1-\sqrt{3}\right)\left(1+tan^2x\right)=0\)

đặt t = tanx rr giải thôi =D ( máy 570 thì mode5 3 còn máy 580 thì mode 9 2 2) :)))

2) cx làm cách tương tự chia 2 vế cho cos^2x

3) giữ vế trái bung vế phải ra

\(sin2x-2sin^2x=2-4sin^22x\)

đặt t = sin2x (-1=<t=<1)

4) đẩy sinx cosx qua trái hết

\(sinx\left(sin^2-1\right)-cosx\left(cos^2x+1\right)=0\)

\(sinx\left(-cos^2x\right)-cos\left(cos^2x+1\right)=0\)

\(-cos\left(sinxcosx+cos^2x+1\right)=0\)

cái vế đầu cosx=0 bn bik giả rr mà dễ ẹc à còn vế sau thì chia cho cos^2(x) như mấy bài trên rr sau đó đặt t = tanx rr bấm máy là ra thui :))

5)bung cái hằng đẳng thức ra sau đó đặt t=sinx+cosx (t thuộc [-căn(2) ; căn(2)]

khi đó ta có sinxcosx=1/2 sin2x= 1/2t^2 - 1/2

làm đi là ra à