K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

a) C M N P B A

xứt tứ giác BMAP có hai đường chéo AB và MP

ta có M trung điểm của MP

        N trung điểm của AB

mà tứ giác có hai đường chéo cắt nhau tại trung điểm => tứ gác đó là hình bình hành 

=> BPAB là hình bình hành

b) xét tứ giác MCAP 

độ theo câu a ta có  BPAB là hình bình hành

=> MC=PA (=MB)

mag MC//AP

=> MCAP là hình bình hành mà C=90 dộ 

=> MMCAP là Hình chữ nhật

 

7 tháng 8 2016

A B C D M N Q P

a)

xét Δ BNM và ΔANP có:

\(\widehat{BNM}=\widehat{ANP}\)( 2 góc đối đỉnh)

NB=NA(gt)

NM=NP(gt)

=> ΔBNM=ΔANP(c.g.c)

=> \(\widehat{MBN}=\widehat{PAN}\)=> MB//PA(1)

xét ΔBNP và ΔANM có:

NB=NA(gt)

MN=NP(gt)

\(\widehat{BNP}=\widehat{MNA}\)( 2 góc đối đỉnh)

=> ΔBNP=ΔANM(c.g.c)

=> \(\widehat{NBP}=\widehat{MAN}\)

=> BP//MA(2)

từ (1)(2)=> MBPA là hình bình hành

b)

ta có:

M là trung điểm của BC; N là trung điểm của AB

=> MN là đường trung bình ứng với cạnh CA của tam giác ABC

=> MN//AC mà AC_|_BC

=> MN_|_BC

theo câu a, ta có: BM//PA

=> MP//CA

=> \(\widehat{PAC}=\widehat{BMP}=90^o\)

ta có: tứ giác ABCD=\(\widehat{PMC}+\widehat{PAC}+\widehat{MCA}+\widehat{MPA}=360^o\)

=> \(360^o=90^o+90^o+90^o+\widehat{MPA}=270+\widehat{MPA}\)

=>\(\widehat{MPA}=\widehat{PAC}=\widehat{ACM}=\widehat{CMP}=90^o\)

=> tứ giác ABCD có 4 góc vuông

=> tứ giác ABCD là hình chữ nhật

c) gọi D là giao của MA và CQ

theo câu a, ta có tứ giác MBPA là hình bình hành => BP=MA

ta có AM là đuờng trung tuyến ứng với cạnh BC của ΔABC

=> AD=2DM

xét Δ NQP và ΔNDM có:

NPNM(gt)

\(\widehat{QPN}=\widehat{NMD}\)(BP//MA- theo câu a)

\(\widehat{PQN}=\widehat{MDN}\)(BP//MA- theo câu a)

=> ΔNQP=ΔNDM(g.c.g)=> QP=MD

cm tương tự ta có ΔNQB=ΔNDA(g.c.g)=> DA=BQ

ta có AD=2DM(cmt)

=> BQ=2PQ(đfcm)

a: Xét tứ giác MBPA có 

N là trung điểm của MP

N là trung điểm của BA

Do đó: MBPA là hình bình hành

a) Xét tứ giác MBPA có 

N là trung điểm của đường chéo BA

N là trung điểm của đường chéo MP

Do đó: MBPA là hình bình hành

b) Xét ΔBCA có 

M là trung điểm của BC

N là trung điểm của BA

Do đó: MN là đường trung bình của ΔBCA

Suy ra: MN//CA và \(MN=\dfrac{CA}{2}\)

mà P\(\in\)MN và \(MN=\dfrac{MP}{2}\)

nên MP//CA và MP=CA

Xét tứ giác PACM có 

MP//CA(cmt)

MP=CA(cmt)

Do đó: PACM là hình bình hành

mà \(\widehat{MCA}=90^0\)

nên PACM là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật

Bài làm

a) Xét tứ giác MBPA có:

N là trung điểm AB ( gt )

N là trung điểm của MP ( Do P đối vứng với M qua N )

=> Tứ giác MBPA là hình bình hành.

b) Vì tứ giác MBPA là hình bình hành

=> AP // MB ( hai cạnh đối ) => AP // CM

=> AP = MB ( hai cạnh đối )

Mà MB = CM ( Do M là trung điểm CB )

=> AP = CM 

Xét tứ giác PACM có:

 AP // CM ( cmt )

AP = CM ( cmt )

=> Tứ giác PACM là hình bình hành

Mà \(\widehat{ACB}=90^0\)

=> Tứ giác PACM là hình chữ nhật.

c) Gọi giao điểm của QC và AM là I

Xét tam giác BCQ có:

M là trung điểm BC

MI // QB 

=> MI là đường trung bình

=> MI = 1/2 BQ                               (1)

Vì PB // AM ( Do MBPA là hình bình hành )

=> PQ // MI 

=> \(\widehat{QPN}=\widehat{NMI}\)( Hai góc so le trong )

Xét tam giác QPN và tam giác IMN có

\(\widehat{QPN}=\widehat{NMI}\)( cmt )

PN = MN ( cmt )

\(\widehat{QNP}=\widehat{MNI}\)( hai góc đối đỉnh )

=> Tam giác QPN = tam giác IMN ( g.c.g )

=> MI = PQ                                             (2)

Từ (1) và (2) => PQ = 1/2 BQ => BQ = 2PQ ( đpcm )

25 tháng 4 2020

A B C M D Q P N

a.Vì N là trung điểm PM, AB

\(\Rightarrow MBPA\) là hình bình hành

b ) Từ câu a ) \(\Rightarrow PQ=BM=MC\) vì M là trung điểm BC 

\(PA//BM\Rightarrow PA//MC\)

\(\Rightarrow APMC\) là hình bình hành

Mà \(AC\perp BC\Rightarrow PACM\) là hình chữ nhật

c.Gọi D là trung điểm BQ \(\Rightarrow BD=DQ\)

\(\Rightarrow DM\) là đường trung bình \(\Delta BCQ\Rightarrow DM//CQ\Rightarrow DM//QN\)

Mà N là trung điểm PM

=> Q là trung điểm PD

\(\Rightarrow QP=QD\Rightarrow QP=QD=DB\Rightarrow BQ=2PQ\)

d.Để PACM là hình vuông

\(\Rightarrow AC=CM\Rightarrow AC=\frac{1}{2}BC\)

19 tháng 7 2015

sai đề r nha bạn, làm j có điểm D

19 tháng 8 2017

thế mà cũng đòi viết học ngu

13 tháng 12 2021

Ai đó giải giúp mik vs!!!

14 tháng 12 2015

ai cho 2 cái li-ke cho tròn 90 đi

 

30 tháng 12 2020

Bổ sung câu c:

Tam giác ABC cần có thêm điều kiện gì thì hình chữ nhật PACM là hình vuông.

 

6 tháng 1 2022

a) Xét tứ giác AEBM:

+ D là trung điểm của AB (gt).

+ D là trung điểm của ME (M là điểm đối xứng với E qua D).

\(\Rightarrow\) Tứ giác AEBM là hình bình hành (dhnb).

\(\Rightarrow\) AM // BE; AM = BE (Tính chất hình bình hành).

Mà BE = EC (E là trung điểm của BC).

\(\Rightarrow\) AM = EC.

Xét tứ giác ACEM:

+ AM = EC (cmt).

+ AM // EC (AM // BE).

\(\Rightarrow\) Tứ giác ACEM là hình bình hành (dhnb).

b) Xét tam giác ABC cân tại A:

AE là đường trung tuyến (E là trung điểm của BC).

\(\Rightarrow\) AE là đường cao (Tính chất tam giác cân).

Xét hình bình hành AEBM: \(\widehat{AEB}=\) \(90^o\) (AE là đường cao).

\(\Rightarrow\) Tứ giác AEBM là hình chữ nhật (dhnb).

c) Tam giác AEB vuông tại E (\(\widehat{AEB}=\) \(90^o\)).

\(\Rightarrow\) \(S_{\Delta AEB}=\dfrac{1}{2}AE.BE=\dfrac{1}{2}AE.\dfrac{1}{2}BC\) (do (E là trung điểm của BC).

\(Thay:\) \(\dfrac{1}{2}.8.\dfrac{1}{2}.12=24\left(cm^2\right).\)

6 tháng 1 2022

a,

xét tam giác ABC có đường t/b DE:

=>DE//AC và DE=\(\dfrac{1}{2}\) AC

M là điểm đối xứng của DE:

=>DE+DM=AC

từ trên suy ra:

EM=AC và EM//AC

vậy ACEM là hình bình hành.

b, 

Xét tam giác ABC là tam giác cân :

=>AB=AC

mà AC = ME

nên: AB =ME (1)

lại có: AM=MB , MD=DE(2)

từ (1) và (2) suy ra:

AEBM là hình chữ nhật.

c,

Xét tam giác ABC có BE=EC suy ra:

BE=EC=\(\dfrac{1}{2}BC\)=\(\dfrac{12}{2}=6cm\)

vì AEBM là hình chữ nhật nên:

góc AEB = 90\(^o\)<=> AEB là tam giác vuông

vậy \(S_{AEB}=\dfrac{AE.BE}{2}=\dfrac{8.6}{2}=24cm^2\)