Kết quả phép tính 3/3.7+3/7.11+3/11.15+3/15.19 bằng
dấu "/" là phần
vd:2 phần 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chắc là đề thiếu: \(y=\frac{1}{2}-\frac{1}{3\cdot7}-\frac{1}{7\cdot11}-\frac{1}{11\cdot15}-\frac{1}{15\cdot19}-\frac{1}{19\cdot23}-\frac{1}{23\cdot27}\)
\(y=\frac{1}{2}-\left(\frac{1}{3\cdot7}+\frac{1}{7\cdot11}+...+\frac{1}{23\cdot27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3\cdot7}+\frac{4}{7\cdot11}+...+\frac{4}{23\cdot27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)
a) Mình ko ghi lại đề nhé!
= \(\frac{1}{2}\) - ( \(\frac{1}{3.7}\) + \(\frac{1}{7.11}\) + ... + \(\frac{1}{23.27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{7}\) + \(\frac{1}{7}\) - .... - \(\frac{1}{27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . ( \(\frac{1}{3}\) - \(\frac{1}{27}\) )
= \(\frac{1}{2}\) - \(\frac{1}{4}\) . \(\frac{8}{27}\)
= \(\frac{1}{2}\) - \(\frac{2}{27}\) = \(\frac{23}{54}\)
b) ..............................................................................
= \(\frac{1}{5}\) . ( \(\frac{5}{5.10}\) - \(\frac{5}{10.15}\) - ... - \(\frac{5}{95.100}\) )
= \(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{10}\) + \(\frac{1}{10}\) - ... - \(\frac{1}{100}\) )
= \(\frac{1}{5}\) . ( \(\frac{1}{5}\) - \(\frac{1}{100}\) )
= \(\frac{1}{5}\) . \(\frac{19}{100}\)
= \(\frac{19}{500}\)
k mình nha! Chúc bạn học tốt và được nhiều k!
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}+0+0+0+0\)
\(=\frac{8}{27}\)
Ta có : \(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\)
\(=\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+.....+\frac{1}{23}-\frac{1}{27}\)
\(=\frac{1}{3}-\frac{1}{27}\)
\(=\frac{8}{27}\)
Ta có : \(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}=\frac{1}{2}-\frac{2}{27}=\frac{23}{54}\)
Trả lời:
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-\frac{1}{11.15}-\frac{1}{15.19}-\frac{1}{19.23}-\frac{1}{23.27}\)
\(=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+\frac{1}{11.15}+\frac{1}{15.19}+\frac{1}{19.23}+\frac{1}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+\frac{4}{15.19}+\frac{4}{19.23}+\frac{4}{23.27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+\frac{1}{15}-\frac{1}{19}+\frac{1}{19}-\frac{1}{23}+\frac{1}{23}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\left(\frac{1}{3}-\frac{1}{27}\right)\)
\(=\frac{1}{2}-\frac{1}{4}.\frac{8}{27}\)
\(=\frac{1}{2}-\frac{2}{27}\)
\(=\frac{23}{54}\)
Học tốt
\(\frac{1}{2}-\frac{1}{3.7}-\frac{1}{7.11}-...-\frac{1}{23.27}=\frac{1}{2}-\left(\frac{1}{3.7}+\frac{1}{7.11}+...+\frac{1}{23.27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{23}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\left(\frac{1}{3}-\frac{1}{27}\right)=\frac{1}{2}-\frac{1}{4}\cdot\frac{8}{27}=\frac{23}{54}\)
\(\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\)
= \(4.\left(\text{}\text{}\text{}\text{}\text{}\text{}\dfrac{4}{3.7}+\dfrac{4}{7.11}+...+\dfrac{4}{23.27}\right)\)
=\(1.\left(\dfrac{1}{3.7}+\dfrac{1}{7.11}+...+\dfrac{1}{23.27}\right)\)
= \(1.\left(\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{23}-\dfrac{1}{27}\right)\)
=\(1.\left(\dfrac{1}{3}-\dfrac{1}{27}\right)\)
=\(1.\left(\dfrac{9}{27}-\dfrac{1}{27}\right)\)
= \(1.\dfrac{8}{27}\)
= \(\dfrac{8}{27}\)
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+...+\frac{4}{\left(3x-1\right).\left(3x+3\right)}=\frac{3}{10}\)
=> \(\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{3x-1}-\frac{1}{3x+3}=\frac{3}{10}\)
=> \(\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
=> \(\frac{1}{3x+3}=\frac{1}{3}-\frac{3}{10}\)
=> \(\frac{1}{3x+3}=\frac{1}{30}\)
=> 3x + 3 = 30
=> 3.(x + 1) = 30
=> x + 1 = 10
=> x = 9
\(\frac{4}{3.7}+\frac{4}{7.11}+\frac{4}{11.15}+....+\frac{4}{\left(3x-1\right)\left(3x+3\right)}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{15}+...+\frac{1}{3x-1}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3}-\frac{1}{3x+3}=\frac{3}{10}\)
\(\Rightarrow\frac{1}{3x+3}=\frac{1}{3}-\frac{3}{10}=\frac{10}{30}-\frac{9}{30}=\frac{1}{30}\)
\(\Rightarrow\left(3x+3\right).1=1.30\Rightarrow3x+3=30\Rightarrow3x=27\Rightarrow x=9\)
em nào có nhu cầu bú lồn thì liên hệ anh