K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

x4+x2+1

=(x2)2+2x2+1-2x2+x2

=(x2+1)2-2x2+x2 

= (x² + 1)² − x² 

= (x² + x+ 1 )(x² − x+ 1 )

 

4 tháng 8 2016

\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2.x^2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x^2+\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\)

11 tháng 10 2015

ứng dụng t/c thêm bớt nà bạn 

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)

\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)

\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)

\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)

5 tháng 10 2019

Gợi ý:

Nhóm:\(\left[\left(x+1\right)\left(x+4\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]-8\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-8\)

Đặt \(t=x^2+5x+4\) thì biểu thức trở thành:

\(t\left(t+2\right)-8=t^2+2t-8=\left(t-2\right)\left(t+4\right)\)

Rồi bạn làm tiếp, nếu còn phân tích được thì phải phân tích, mình bận rồi.

5 tháng 10 2019

(x + 1)(x + 2)(x + 3)(x + 4) - 8

= [(x + 1)(x + 4)][(x + 2)(x + 3)] - 8

= (x2 + 4x + x + 4)(x2 + 3x + 2x + 6) - 8

= (x2 + 5x + 4)(x2 + 5x + 6) - 8

Đặt x2 + 5x + 5 = t

⇒ (x2 + 5x + 5 - 1)(x2 + 5x + 5 + 1) - 8 (1)

Thay t = x2 + 5x + 5 vào (1), ta có:

(t - 1)(t + 1) - 8 = t2 - 1 - 8 = t2 - 9

= (t - 3)(t + 3)

⇔ (x2 + 5x + 5 - 3)(x2 + 5x + 5 + 3)

= (x2 + 5x + 2)(x2 + 5x + 8)

Chúc bạn học tốt !!!!!!!! vuivuivui

1 tháng 7 2015

     x^4 + x^2 + 1 

= x^4 + 2x^2   + 1 - x^2

= ( x^2  + 1)^2 - x^2

= ( x^2 - x + 1 )( x^2 + x + 1)

16 tháng 10 2017

x4+x3+2x2+x+1=x4+x3+x2+x2+x+1=(x4+x3+x2)+(x2+x+1)

                                                      =x2(x2+x+1)+(x2+x+1)

                                                       =(x2+x+1)(x2+1)

19 tháng 10 2017

=(x^4+2x^2+1)+(x^3+x)

=(x^2+1)^2+x(x^2+1)

(x^+1)*(x^2+1+x0

11 tháng 10 2015

b/ \(=x^8-x^7+x^5-x^4+x^2+x^6-x^5+x^3-x^2+1+x^7-x^6+x^4-x^3+x\)

\(=x^2\left(x^6-x^5+x^3-x^2+1\right)+\left(x^2-x^5+x^3-x^2+1\right)+x\left(x^6-x^5+x^3-x^2+1\right)\)

\(=\left(x^6-x^5+x^3-x^2+1\right)\left(x^2+1+x\right)\)