K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow x^3-6x^2+12x-8+3\left(4x^2-12x+9\right)=x^3+9x^2+27x+27-5\left(9x^2+6x+1\right)+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow-6x^2+12x-8+12x^2-36x+27=9x^2+27x+27-45x^2-30x-5+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow6x^2-24x+19=-36x^2-3x+22+\left(x-1\right)\left(x-3\right)\)

\(\Leftrightarrow42x^2-21x-3-x^2+4x-3=0\)

\(\Leftrightarrow41x^2-17x-6=0\)

\(\Delta=\left(-17\right)^2-4\cdot41\cdot\left(-6\right)=1273\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{17-\sqrt{1273}}{82}\\x_2=\dfrac{17+\sqrt{1273}}{82}\end{matrix}\right.\)

2 tháng 8 2017

1. (3x - 5)2 - (3x + 1)2 = 8

=> (3x - 5 - 3x - 1)(3x - 5 + 3x + 1) = 8

=> -6(6x - 4) = 8

=> 6x - 4 = \(\dfrac{-4}{3}\)

\(\Rightarrow x=\dfrac{4}{9}\)

2) 2x(8x - 3) - (4x - 3)2 = 27

=> 16x2 - 6x - 16x2 + 24x - 9 = 27

=> 18x - 9 = 27

=> x = 2

3) (2x - 3)2 - (2x + 1)2 = 3

=> (2x - 3 - 2x - 1)(2x - 3 + 2x +1) = 3

=> -4(4x - 2) = 3

=> 4x - 2 = \(\dfrac{-3}{4}\)

\(\Rightarrow x=\dfrac{5}{16}\)

4) (x + 5)2 - x2 = 45

=> (x + 5 - x)(x + 5 + x) = 45

=> 5(2x + 5) = 45

=> 2x + 5 = 9

=> x = 2

5) (x - 3)3 - (x - 3)(x2 + 3x + 9) + 9(x + 1)2 = 18

=> x3 - 9x2 + 27x - 27 - x3 + 27 + 9(x2 + 2x + 1) = 18

=> -9x2 + 27x + 9x2 + 18x + 9 = 18

=> 45x + 9 = 18

=> 45x = 9

=> x = \(\dfrac{1}{5}\)

6) x(x - 4)(x + 4) - (x - 5)(x2 + 5x + 25) = 13

=> x (x2 - 16) - (x3 - 125) = 13

=> x3 - 16x - x3 + 125 = 13

=> -16x = -112

=> x = 7.

2 tháng 8 2017

Bạn ơi có chắc đúng ko đấy.

\(\Leftrightarrow\left(2x-1\right)^3-\left(2x+3\right)^3-3\left(3x+1\right)^2-2\left(x-2\right)^2+\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow8x^3-12x^2+6x-1-8x^3-36x^2-54x-27-3\left(9x^2+6x+1\right)-2\left(x^2-4x+4\right)+x^2+x-2=0\)

\(\Leftrightarrow-48x^2-48x-28-27x^2-18x-3-2x^2+8x-8+x^2+x-2=0\)

\(\Leftrightarrow-76x^2-57x-41=0\)

\(\Leftrightarrow76x^2+57x+41=0\)

\(\text{Δ}=57^2-4\cdot76\cdot41=-9215< 0\)

Vậy: Phương trình vô nghiệm

17 tháng 8 2016

phân tích theo hằng đẳng thức rồi rút gọn là ra thôi bạn

6 tháng 9 2016

\(\left(2x-1\right)^3-3\left(1-3x\right)^2=\left(3+2x\right)^3-2\left(x-2\right)\left(x+3\right)\)

\(8x^3-12x^2+6x-1-3\left(1-6x+9x^2\right)=27+54x+36x^2+8x^3-2\left(x^2+3x-2x-6\right)\)\(8x^3-12x^2+6x-1-3+18x-27x^2=27+54x+36x^2+8x^3-2x^2-6x+4x+12\)\(8x^3-39x^2+24x-4=8x^3+34x^2+52x+39\)

\(8x^3-39x^2+24x-4-8x^3-34x^2-52x-39=0\)

\(-73x^2-28x-43=0\)

         Vậy đa thức vô nghiệm

 

 

 

30 tháng 7 2016

(2x1)33(x+2)(x3)=(3+2x)33x(x+1)

<=>\(8x^3-12x^2+6x-1-3x^2+3x+18=9+54x+36x^2+8x^3-3x^2-3x\)

<=>\(48x^2+42x-8=0\)

<=> \(x=\frac{-21\pm5\sqrt{33}}{48}\)

a/ \(x=\dfrac{-5}{12}\)

b/ \(x\approx-1,9526\)

c/ \(x=\dfrac{21-i\sqrt{199}}{10}\)

d/ \(x=\dfrac{-20}{13}\)

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

⇒ x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

⇒ x3-6x2+12x-8+6x2+12x+6-x3+12=0

⇒ 24x+10=0

⇒ 24x=-10

⇒ x=-5/12

\(\Leftrightarrow20\left(x^2-4x+3\right)-24\left(4x^2-4x+1\right)=15\left(9x^2+6x+1\right)+90x\left(x-1\right)\)

\(\Leftrightarrow20x^2-80x+60-96x^2+96x-24=135x^2+90x+15+90x^2-90x\)

\(\Leftrightarrow-301x^2+16x+21=0\)

\(\text{Δ}=16^2-4\cdot\left(-301\right)\cdot21=25540\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là 

\(\left\{{}\begin{matrix}x_1=\dfrac{-16-\sqrt{25540}}{-602}=\dfrac{16+\sqrt{25540}}{602}\\x_2=\dfrac{16-\sqrt{25540}}{602}\end{matrix}\right.\)

26 tháng 12 2021

b: \(=2x^2-3x+10x-15=2x^2+7x-15\)