Chứng minh rằng: Nếu ab=2.cd thì abcd chia hết cho 67.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số abcd = 100ab+cd=200cd+cd (vì ab = 2cd)
hay = 201cd
Mà 201 \(⋮\) 67
Do đó : nếu ab = 2cd thì abcd \(⋮\) 67
Ta có: abcd = ab x 100 + cd.
Vì ab = 2 x cd nên 2 x cd x 100 + cd = abcd
=> abcd = cd x ( 200+1) = cd x 201
Vì 201 chia hết cho 67 nên cd x 201 chia hết cho 67.
Do đó abcd chia hết cho 67
Ta có: abcd = ab x 100 + cd.
Vì ab = 2 x cd nên 2 x cd x 100 + cd = abcd
=> abcd = cd x ( 200+1) = cd x 201
Vì 201 chia hết cho 67 nên cd x 201 chia hết cho 67.
Do đó abcd chia hết cho 67
Từ ab=2xcd
=>abcd=abx100+cd=2xcdx200+cd=201xcd=67x3xcd chia hết cho 67
Vậy abcd chia hết cho 67(dpcm)
abcd = 1000a + 100b + 10c + d = 100ab + cd = 200 cd + cd = 201 cd
Mà 201 chia hết cho 67
=> ab = 2cd chia hết cho 67
abcd=100ab+cd=200cd+cd(vì ab=2cd)
hay 201cd
mà 201 chia hết cho 67
=> đpcm