Cho tam giác ABC cân tại A (A < 90o). Kẻ BM vuông góc AC. Cmr \(\frac{AM}{MC}=2\left(\frac{AC}{BC}\right)^2-1\)
Giuk vs! lần trước gửi một lần rồi nhưng chẳng có ai trả lời! Mong các bn giuk mk ạ!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi AH,BD,CE là 3 đường cao của ΔABC
Vì ΔABC cân tại A(gt),có AH là đường cao
=>AH cũng là đường trung tuyến
=>BH=CH=\(\frac{1}{2}\)BC=\(\frac{1}{2}\cdot18=9\)
Xét ΔABH vuông tại H
=>\(AB^2=AH^2+BH^2\)(theo định lý pytago)
=>\(AH^2=AB^2-BH^2=15^2-9^2=144\)
=>AH=12
Xét ΔAHC và ΔBDC có:
\(\widehat{AHC}=\widehat{BDC}=90\)
\(\widehat{C}\) : góc chung
=>ΔAHC ~ ΔBDC (g.g)
=>\(\frac{HC}{DC}=\frac{AC}{BC}\)
hay \(\frac{9}{DC}=\frac{15}{18}\)
=>\(DC=\frac{9\cdot18}{15}=10,8\)
Xét ΔBDC vuông tại D(gt)
=>\(BC^2=DC^2+BD^2\) (theo định lý pytagp)
=>\(BD^2=BC^2-DC^2=18^2-10,8^2=207,36\)
=>BD= 14,4
Xét ΔBCE và ΔCBD có:
\(\widehat{BEC}=\widehat{CDB}=90\)
BC: cạnh chung
\(\widehat{B}=\widehat{C}\) (gt)
=>ΔBCE=ΔCBD(cạnh huyền-góc nhọn)
=>CE=BD=14,4