K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2016

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{x}{2}=\frac{y}{1}=\frac{z}{4}=\frac{x-y+z}{2-1+4}=\frac{3}{5}\)

=> \(\frac{x}{2}=\frac{3}{5}\Rightarrow x=\frac{2\cdot3}{5}=\frac{6}{5}\)

     \(\frac{y}{1}=\frac{3}{5}\Rightarrow y=\frac{3}{5}\)

     \(\frac{z}{4}=\frac{3}{5}\Rightarrow z=\frac{3\cdot4}{5}=\frac{12}{5}\)

1 tháng 8 2016

Vì x:2=y:1=z:4

       Suy ra:\(\frac{x}{2}=\frac{y}{1}=\frac{z}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

      \(\Rightarrow\frac{x}{2}=\frac{y}{1}=\frac{z}{4}=\frac{x-y+z}{2-1+4}=\frac{3}{5}\)

\(\Rightarrow\begin{cases}\frac{x}{2}=\frac{3}{4}\\\frac{y}{1}=\frac{3}{4}\\\frac{z}{4}=\frac{3}{4}\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{6}{4}\\y=\frac{3}{4}\\z=3\end{cases}\)

Vậy \(x=\frac{6}{4};y=\frac{3}{4};z=3\)

1 tháng 8 2016

Áp dụng tc dãy tỉ số bằng nhau:

\(\frac{x}{2}=\frac{y}{1}=\frac{z}{4}=\frac{x-y+z}{2-1+4}=\frac{3}{3}=1\)

\(\frac{x}{2}=1\Rightarrow x=2\)

\(\frac{y}{1}=1\Rightarrow y=1\)

\(\frac{z}{4}=1\Rightarrow z=4\)

8 tháng 10 2021

x:y:z=4:5:6

--> x/4=y/5=z/6

Đặt x=4k; y=5k; z=6k

x^2-2y^2+z^2=18

(4k)^2-2.(5k)^2+(6k)^2=18

2k^2=18

k^2=9

k=3 hoặc k=-3

Khi k=3

--> x=4.3=12

y=5.3=15

z=6.3=18

Khi k=-3

--> x=4.(-3)=-12

y=5.(-3)=-15

z=6.(-3)=-18

1 tháng 11 2021
Ta có: x.y= y mũ 2=> x.z=y.Y => x/y=y/z (1) y.t=z mũ 2=> y.t=z.z => y/z=z/t (2) Từ (1) và (2) suy ra: x/y=y/z=z/t=> (x/y) mũ 3=(y/z) mũ 3=(z/t) mũ 3 => x mũ 3/ y mũ 3=y mũ 3/ z mũ 3= z mũ 3/ t mũ 3 Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: x mũ 3/ y mũ 3= y mũ 3/ z mũ 3= z mũ 3/ t mũ 3= x mũ 3+y mũ 3+z mũ 3/y mũ 3+z mũ 3+t mũ 3 (*) Mặt khác ta có: x mũ 3/y mũ 3= x/y.x/y.x/y= x/y.y/z=z/t=x/t (**) Từ (*) và (**) suy ra: x mũ 3 +y mũ 3+z mũ 3/ y mũ 3+z mũ 3+ t mũ 3= x/t

Từ 2x=3y=4z \(\Rightarrow\)\(\frac{x}{6}\)=\(\frac{y}{4}\)=\(\frac{z}{3}\) áp dụng tính chất dãy tỉ số bằng nhau, ta được:

\(\frac{x}{6}\) =\(\frac{y}{4}\)=\(\frac{z}{3}\)\(\frac{y-x+z}{4-6+3}\)=\(\frac{2013}{1}\)= 2013

\(\Rightarrow\)x=2013.6=12078

\(\Rightarrow\)y= 2013.4=8052

\(\Rightarrow\)z=2013.3=6039

Vậy: x=12078

        y=8052

        z=6039

HOK TỐT!

@LOANPHAN.

24 tháng 7 2019

Vì \(x:y:z=2:3:4\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)

\(\Rightarrow\frac{x}{2}=\frac{2y}{6}=\frac{z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{2}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{2+6-4}=\frac{-8}{4}=-2\)

\(\Rightarrow\hept{\begin{cases}x=-2.2=-4\\y=-2.3=-6\\z=-2.4=-8\end{cases}}\)

Vậy \(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)

25 tháng 7 2019

Ta có :\(x\div y\div z=2\div3\div4\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\).

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\left(k\ne0\right)\)

\(\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=4k\end{cases}\Rightarrow\hept{\begin{cases}x=2k\\2y=6k\\z=4k\end{cases}}}\)

Mà \(x+2y-z=-8\)

\(\Rightarrow2k+6k-4k=-8\)

\(\Rightarrow4k=-8\)

\(\Rightarrow k=-2\)

\(\Rightarrow\hept{\begin{cases}x=2.\left(-2\right)\\y=3.\left(-2\right)\\z=4.\left(-2\right)\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}}\)

Vậy \(\hept{\begin{cases}x=-4\\y=-6\\z=-8\end{cases}}\)

23 tháng 10 2017

(a)         a=4    b=8     c=10

(b)           

23 tháng 10 2017

a, Ta có : \(a:b:c=2:4:5 \)và \(a+b+c=22\)

\(\Rightarrow\frac{a}{2}=\frac{b}{4}=\frac{c}{5}\)

Theo tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{22}{11}=2\)

\(\Rightarrow\frac{a}{2}=2\Leftrightarrow a=2.2=4\)

\(\frac{b}{4}=2\Leftrightarrow b=2.4=8\)

\(\frac{c}{5}=2\Leftrightarrow c=2.5=10\)

Vậy a = 4 ; b = 8 ; c = 10

\(\frac{4}{5x}=\frac{7}{6y}=\frac{2}{3z}\)

=> \(\frac{5x}{4}=\frac{6y}{7}=\frac{3z}{2}\)

=> \(\frac{5x}{4}:30=\frac{6y}{7}:30=\frac{3z}{2}:30\)

=> \(\frac{x}{24}=\frac{y}{35}=\frac{z}{20}=\frac{x+y+z}{24+35+20}=\frac{80}{79}\)

=> \(x=\frac{1920}{79};y=\frac{2800}{79};z=\frac{1600}{79}\)