K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=50^0\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\sin\widehat{C}\)

\(=20\cdot\sin50^0\)

hay \(AB\simeq15,32\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=20^2-15.32^2=165,2976\)

hay \(AC\simeq12,86\left(cm\right)\)

Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=50^0\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\sin\widehat{C}\)

\(\Leftrightarrow AB=20\cdot\sin50^0\)

hay \(AB\simeq15,32\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)

hay \(AC\simeq12,86\left(cm\right)\)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{C}=50^0\)

Xét ΔABC vuông tại A có 

\(AB=BC\cdot\sin\widehat{C}\)

\(\Leftrightarrow AB=20\cdot\sin50^0\)

hay \(AB\simeq15,32\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow AC^2=20^2-15.32^2=165.2976\)

hay \(AC\simeq12,86\left(cm\right)\)

a) Ta có: ΔABC vuông tại A(gt)

nên \(\widehat{B}+\widehat{C}=90^0\)

hay \(\widehat{B}=60^0\)

Xét ΔABC vuông tại A có 

\(AB=AC\cdot\tan30^0\)

\(\Leftrightarrow AB=10\cdot\dfrac{\sqrt{3}}{3}=\dfrac{10\sqrt{3}}{3}\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+\left(\dfrac{10\sqrt{3}}{3}\right)^2=\dfrac{400}{3}\)

hay \(BC=\dfrac{20\sqrt{3}}{3}\left(cm\right)\)

NV
8 tháng 3 2021

\(C=180^0-\left(A+B\right)=105^0\)

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}\Rightarrow a=\dfrac{b.sinA}{sinB}=\dfrac{20.sin35^0}{sin40^0}\approx17,8\left(cm\right)\)

\(\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow c=\dfrac{b.sinC}{sinB}\approx30\left(cm\right)\)

8 tháng 3 2021

Giúp đỡ ạ

25 tháng 7 2017

Bạn kể thêm đường cao và đặt ẩn là làm ra