So sánh:
1/56+1/57+..+1/100 và 1/1.2+1/3.4+...+1/99.100
Giup mình với nhé .Mình đang cần gấp!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}\right)=\frac{1}{100}+\frac{1}{99}-\frac{1}{100}\)
\(\Leftrightarrow x-\frac{98}{99}=\frac{1}{99}\Leftrightarrow x=1\)
\(B=-\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-...-\frac{1}{98.99}-\frac{1}{99.100}\\
=-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\\
=-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\\
=-\left(1-\frac{1}{100}\right)=\frac{-99}{100}\)
\(\text{#}HaimeeOkk\)
\(A=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2018.2019}+\dfrac{1}{2019.2020}\)
\(A=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2018}-\dfrac{1}{2019}+\dfrac{1}{2019}-\dfrac{1}{2020}\)
\(A=1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-...-\left(\dfrac{1}{2019}-\dfrac{1}{2019}\right)-\dfrac{1}{2020}\)
\(A=1-0-0-0-...-0-\dfrac{1}{2020}\)
\(A=1-\dfrac{1}{2020}\)
\(A=\dfrac{2019}{2020}\)
Vậy \(A=\dfrac{2019}{2020}\)
B = 1/1.2 + 1/3.4 + 1/5.6 + ... + 1/59.60
B = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/59 - 1/60
B = (1 + 1/3 + 1/5 + ... + 1/59) - (1/2 + 1/4 + 1/6 + ... + 1/60)
B = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/59 + 1/60) - 2.(1/2 + 1/4 + 1/6 + ... + 1/60)
B = (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/59 + 1/60) - (1 + 1/2 + 1/3 + ... + 1/30)
B = 1/31 + 1/32 + 1/33 + ... + 1/60 = A
=> B = A
ta có: Lớn nhất của A là:\(\frac{1}{31}+\frac{1}{31}+...+\frac{1}{31}\)(30 phân số)
=30/31
B=1-\(\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{3}+...+\frac{1}{59}-\frac{1}{60}\)\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{59}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{60}\right)\)
Bé nhất của của B là :\(\left(1+1+...+1\right)-\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(=30-\frac{30}{60}\)
=>B>A
Ta có
\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+....+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{100}\right)-1-\frac{1}{2}-\frac{1}{3}-....-\frac{1}{50}\)
\(=\frac{1}{51}+\frac{1}{52}+.....+\frac{1}{100}\)
=>.....
bạn làm tiếp được không?