K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

a)ĐK:\(\begin{cases}x^2-1\ge0\\x^2-2\sqrt{x^2-1}\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x^2\ge1\\x^2\ge2\sqrt{x^2-1}\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^4\ge4\left(x^2-1\right)\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge1\\x^4-4x^2+4\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\\left(x^2-2\right)^2\ge0\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x^2-2\ge0\end{cases}\)

\(\Leftrightarrow\begin{cases}x\ge1\\x^2\ge2\end{cases}\)\(\Leftrightarrow\begin{cases}x\ge1\\x\ge\sqrt{2}\end{cases}\)\(\Leftrightarrow x\ge\sqrt{2}\)

b)Có \(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2\sqrt{x^2-1}}\)

\(=\sqrt{\left(x^2-1\right)+2\sqrt{x^2-1}+1}-\sqrt{\left(x^2-1\right)-2\sqrt{x^2-1}+1}\)

\(=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\)

\(=\sqrt{x^2-1}+1-\left|\sqrt{x^2-1}-1\right|\)

Vói \(x\ge1\) thì A=\(\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=\sqrt{x^2-1}+1-\sqrt{x^2-1}+1=2\)

Với \(\sqrt{2}< x< 1\) thì 

                \(A=\sqrt{x^2-1}+1-\left(1-\sqrt{x^2-1}\right)=\sqrt{x^2-1}+1-1+\sqrt{x^2-1}=2\sqrt{x^2-1}\)

2 tháng 9 2021

\(A=\sqrt{x^2+2\sqrt{x^2-1}}-\sqrt{x^2-2x\sqrt{x^2-1}}\\ A=\sqrt{\left(\sqrt{x^2-1}+1\right)^2}-\sqrt{\left(\sqrt{x^2-1}-1\right)^2}\\ A=\left|\sqrt{x^2-1}+1\right|-\left|\sqrt{x^2-1}-1\right|\)

\(a,\) A có nghĩa \(\Leftrightarrow x^2-1\ge0\Leftrightarrow\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

\(b,x\ge\sqrt{2}\Leftrightarrow\sqrt{x^2-1}-1\ge\sqrt{\left(\sqrt{2}\right)^2-1}-1=0\\ \Rightarrow A=\sqrt{x^2-1}+1-\left(\sqrt{x^2-1}-1\right)=2\)

a: \(=x\sqrt{2}-\sqrt{\left(x\sqrt{2}+1\right)^2}=x\sqrt{2}-\left|x\sqrt{2}+1\right|\)

b: Khi A=-3 thì \(\left|x\sqrt{2}+1\right|=x\sqrt{2}+3\)

\(\Leftrightarrow x\sqrt{2}+1=-x\sqrt{2}-3\)

\(\Leftrightarrow2x\sqrt{2}=-4\)

hay \(x=-\sqrt{2}\)

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

b: Ta có: \(A=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\)

\(=\sqrt{x}-1+\sqrt{x}\)

\(=2\sqrt{x}-1\)

23 tháng 10 2021

a: \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

\(=\dfrac{x-2\sqrt{x}+1}{\sqrt{x}-1}\)

\(=\sqrt{x}-1\)

23 tháng 10 2021

a) \(A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

                        Đk: \(x>0\) và \(x\ne1\)

\(\Rightarrow A=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{x-\sqrt{x}}\)

        \(=\dfrac{x}{\sqrt{x}-1}-\dfrac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{x\sqrt{x}-2x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(x-2\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

        \(=\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}=\sqrt{x}-1\)

b) Thay \(x=3+2\sqrt{2}\) vào A ta được:

  \(A=\sqrt{3+2\sqrt{2}}-1=\sqrt{\left(\sqrt{2}+1\right)^2}-1\)

      \(=\sqrt{2}+1-1=\sqrt{2}\)

(Vì \(\sqrt{2}+1>0\Rightarrow\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\))