Cho tứ diện ABCD có ABC và BCD là hai tam giác đều lần lượt nằm trong hai mặt phẳng vuông góc với nhau biết AD = a .Tính thể tích tứ diện
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Gọi H là trung điểm của BC. Ta có: A H ⊥ B C
Mặt khác A B C ⊥ B C D ⇒ A H ⊥ B C D
Lại có A H = a 3 2 ⇒ V = 1 3 A H . S B C D = 1 3 . a 3 2 . a 2 3 4 = a 3 8
Đáp án D
Gọi H là hình chiếu của A trên (BCD) ⇒ A H ⊥ B C D
Kẻ H K ⊥ C D K ∈ C D ⇒ C D ⊥ A H K ⇒ A C D ; B C D ^ = A K H ^
Ta có V A B C D = 1 3 A H . S ∆ B C D ⇒ A H = 3 V S ∆ B C D = 3 . 20 10 = 6
Và S ∆ A C D = 1 2 A K . C D ⇒ A K = 2 . S C D = 2 . 15 3 = 10
Tam giác AHK vuông tại H, có c o t A K H ^ = H K A H = 10 2 - 6 2 6 = 4 3
ban cm AH _|_mp (BCD) tương tự như trên ==> AH_|_DH, hai tg ABC va BCD la 2 tg đều có cạnh Bc chung nên đường cao của chúng bằng nhau=> tg HAD vuông cân tại H ma AD =a => Ah =Dh =sin45*a = a\(\frac{\sqrt{2}}{2}\)
tg đều biết độ dài đường cao => độ dài mỗi cạnh, tu do tinh duoc dt tg ABC va tinh duoc the tich khoi chopbạn tự vẽ hình và tính nah
tks p nha :-)