K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2021

không coá văn nhỉ :D ? =((

31 tháng 7 2021

1,

\(R1=R2\)(R1: điện trở đồng , R2: điện trở nhôm)

\(=>\dfrac{p1.l1}{S1}=\dfrac{p2.l2}{S2}\) mà chiều dài ko đổi

\(=>\dfrac{p1}{S1}=\dfrac{p2}{S2}=>\)\(S2=\dfrac{S1.p2}{p1}=\dfrac{0,0002.2,8.10^{-8}}{1,7.10^{-8}}\approx3,3.10^{-4}m^2\)

lại có \(V=S.h=>\dfrac{m}{D}=S.h=>m=S.h.D\)

\(=>\dfrac{m1}{m2}=\dfrac{S1.D1.h}{S2.D2h}=\dfrac{8900.0,0002}{2700.3,3.10^{-4}}=2\)(lần)

\(=>m1=2m2\)\(< =>m2=\dfrac{1}{2}m1\)=>khối lượng dây giảm 2 lần

 

29 tháng 7 2021

đăng dễ dễ thoi idol

29 tháng 7 2021

1: Giả sử \(2\ge a\ge b\ge c\ge1\).

BĐT cần cm tương đương \(\dfrac{a}{b}+\dfrac{b}{c}+\dfrac{c}{a}+\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}\le7\).

Ta có \(\dfrac{\left(a-b\right)\left(b-c\right)}{bc}\ge0\Leftrightarrow\dfrac{a}{c}+1\ge\dfrac{a}{b}+\dfrac{b}{c}\);

\(\dfrac{\left(a-b\right)\left(b-c\right)}{ab}\ge0\Leftrightarrow1+\dfrac{c}{a}\ge\dfrac{c}{b}+\dfrac{b}{a}\).

Từ đó ta chỉ cần chứng minh \(\dfrac{a}{c}+\dfrac{c}{a}\le\dfrac{5}{2}\Leftrightarrow\left(a-2c\right)\left(2a-c\right)\le0\).

Dễ thấy \(a\le2\le2c;2a\ge2\ge c\) nên ta có đpcm.

Đẳng thức xảy ra khi chẳng hạn a = 2; b = c = 1.

9 tháng 2 2021

Bài 2.

Tìm Min.

\(M=\sum\sqrt{\left(x-3\right)^2+4^2}\ge\sqrt{\left(x+y+z-9\right)^2+\left(4+4+4\right)^2}=6\sqrt{5}\)

Đẳng thức xảy ra khi $x=y=z=1.$

Tìm Max.

Ta đi chứng minh \(5-\dfrac{1}{3}x\ge\sqrt{x^2-16x+25}\)

Do $x+y+z=3;x,y,z\ge 0$ nên $x\le 3.$ Do đó \(VT\ge5-1=4>0.\) (1)

Bình phương hai vế, rút gọn, bất đẳng thức tương đương với \(\dfrac{8}{9}x\left(3-x\right)\ge0\) (hiển nhiên)

Thiết lập hai bất đẳng thức còn lại tương tự và cộng theo vế thu được Max = 14 kết hợp với số 4 ở (1) là được ngày sinh của em=))

9 tháng 2 2021

Đề bất đẳng thức đơn giản v:vv

3c) Ta sẽ chứng minh 

\(\sqrt{\dfrac{a^3}{a^3+\left(b+c\right)^3}}\ge\dfrac{a^2}{b^2+c^2}\Leftrightarrow\dfrac{a^3\left[2\left(b^2+c^2\right)a^2-\left(b+c\right)^3a+\left(b^2+c^2\right)^2\right]}{\left[a^3+\left(b+c\right)^3\right]\left(b^2+c^2\right)}\ge0\)

Hay là \(2\left[2\left(b^2+c^2\right)a^2+\left(b^2+c^2\right)^2\right]\ge (b+c)^3 a\)

Đúng vì theo AM-GM ta có:

\(VT\ge2\sqrt{2a^2\left(b^2+c^2\right)^3}\ge2\sqrt{2\left[\dfrac{\left(b+c\right)^2}{2}\right]^3}a=\left(b+c\right)^3a=VP.\)

Xong.

8 tháng 2 2021

Bài I

a ĐKXĐ : \(\left\{{}\begin{matrix}2-x\ge0\\2-x^2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le2\\-\sqrt{2}\le x\le\sqrt{2}\end{matrix}\right.\) \(\Leftrightarrow-\sqrt{2}\le x\le\sqrt{2}\) 

\(\Rightarrow\left(2-x^2\right)=\left(\sqrt{2-x}\right)^2\Leftrightarrow x^4-4x^2+4=2-x\Leftrightarrow x^4-4x^2+x+2=0\)

\(\Leftrightarrow x^4-x^3+x^3-x^2-3x^2+3x-2x+2=0\Leftrightarrow\left(x-1\right)\left(x^3+x^2-3x-2\right)=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\left(1\right)\\x^3+x^2-3x-2=0\left(2\right)\end{matrix}\right.\) 

Từ (1) \(\Rightarrow x=1\left(TM\right)\) 

Từ (2) \(\Rightarrow x^3+2x^2-x^2-2x-x-2=0\Leftrightarrow\left(x+2\right)\left(x^2-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\x^2-x-1=0\end{matrix}\right.\) 

*Nếu x+2=0 \(\Leftrightarrow x=-2\left(L\right)\)

*Nếu \(x^2-x-1=0\Leftrightarrow x^2-x+\dfrac{1}{4}=\dfrac{5}{4}\Leftrightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\) 

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{\sqrt{5}}{2}\\x-\dfrac{1}{2}=\dfrac{-\sqrt{5}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{5}+1}{2}\left(L\right)\\x=\dfrac{-\sqrt{5}+1}{2}\left(TM\right)\end{matrix}\right.\) 

Vậy...

QT
Quoc Tran Anh Le
Giáo viên
8 tháng 2 2021

Ảnh bị up thiếu, đề còn thiếu đây nhé undefined

 

Toán C89 :

Ta có : \(x^3+y^3+6xy\le8\)

\(\Leftrightarrow\left(x+y\right)^3-3xy.\left(x+y\right)-8+6xy\le0\)

\(\Leftrightarrow\left[\left(x+y\right)^3-8\right]-3xy.\left(x+y-2\right)\le0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4\right]-3.xy.\left(x+y-2\right)\le0\)

\(\Leftrightarrow\left(x+y-2\right)\left[\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\right]\le0\) (*)

Ta thấy : \(\left(x+y\right)^2+2.\left(x+y\right)+4-3xy\)

\(=x^2+y^2-xy+2.\left(x+y\right)+4\)

\(=\left(x-\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+2.\left(x+y\right)+4>0\forall x,y>0\)

Do đó từ (*) suy ra : \(x+y-2\le0\Leftrightarrow x+y\le2\)

Ta có : \(Q=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{4}{x+y}\ge\dfrac{4}{2}=2\)

Dấu "=" xảy ra khi \(x=y=1\)

Vậy Min \(Q=2\) khi \(x=y=1\)

Toán C88 :

Áp dụng BĐT Cô - si cho 2 số dương lần lượt ta có được :

\(\left(a+1\right)+4\ge4\sqrt{a+1}\)

\(\left(b+1\right)+4\ge4\sqrt{b+1}\)

\(\left(c+1\right)+4\ge4\sqrt{c+1}\)

Do đó : \(a+b+c+15\ge4.\left(\sqrt{a+1}+\sqrt{b+1}+\sqrt{c+1}\right)=4.6=24\)

\(\Leftrightarrow a+b+c\ge9\)

Ta có : \(a^2+ab+b^2=\dfrac{4.\left(a^2+ab+b^2\right)}{4}=\dfrac{\left(a-b\right)^2+3.\left(a+b\right)^2}{4}\ge\dfrac{3.\left(a+b\right)^2}{4}>0\)

\(\Rightarrow\sqrt{a^2+ab+b^2}\ge\dfrac{\sqrt{3}}{2}.\left(a+b\right)\)

Chứng minh tương tự ta có :

\(\sqrt{b^2+bc+c^2}\ge\dfrac{\sqrt{3}}{2}\left(b+c\right)\)

\(\sqrt{c^2+ca+a^2}\ge\dfrac{\sqrt{3}}{2}.\left(c+a\right)\)

Do đó : \(P\ge\dfrac{\sqrt{3}}{2}\cdot2\cdot\left(a+b+c\right)=\sqrt{3}.\left(a+b+c\right)\ge9\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=3\)

Vậy Min \(P=9\sqrt{3}\) khi \(a=b=c=3\)

17 tháng 2 2021

[Toán.C93_17.2.2021] rất hay và khó! Đó là câu em gửi anh trên Facebook hồi sáng. Và em cũng là người đầu công khai đưa ra lời giải bài này.

Xem chi tiết tại tthnew's blog: 1721

 

17 tháng 2 2021

Cho mình hỏi bạn tên gì vậy, thấy bạn ở đâu cũng có, hình như hồi xưa cũng ở bên olm.

17 tháng 2 2021

C96 trùng C94 rồi

QT
Quoc Tran Anh Le
Giáo viên
17 tháng 2 2021

Mình không để ý, cảm ơn bạn nhiều ^^

7 tháng 2 2021

I.1.

ĐK:  \(x\in R\)

\(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow2x^2+6x+2=2\left(x+3\right)\sqrt{x^2+1}\)

\(\Leftrightarrow x^2+1+x^2+6x+9-2\left(x+3\right)\sqrt{x^2+1}=8\)

\(\Leftrightarrow\left(x+3-\sqrt{x^2+1}\right)^2=8\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3-\sqrt{x^2+1}=2\sqrt{2}\\x+3-\sqrt{x^2+1}=-2\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+1}=x+3-2\sqrt{2}\left(1\right)\\\sqrt{x^2+1}=x+3+2\sqrt{2}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\sqrt{x^2+1}=x+3-2\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3-2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3-2\sqrt{2}\right)x+17-12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge2\sqrt{2}-3\\2\left(3-2\sqrt{2}\right)x=12\sqrt{2}-16\end{matrix}\right.\)

\(\Leftrightarrow x=2\sqrt{2}\)

\(\left(2\right)\Leftrightarrow\sqrt{x^2+1}=x+3+2\sqrt{2}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+3+2\sqrt{2}\ge0\\x^2+1=x^2+2\left(3+2\sqrt{2}\right)x+17+12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-3-2\sqrt{2}\\2\left(3+2\sqrt{2}\right)x=-16-12\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow x=-2\sqrt{2}\)

Vậy phương trình có nghiệm \(x=\pm2\sqrt{2}\)

7 tháng 2 2021

Câu 1 :

Ta có : \(x^2+3x+1=\left(x+3\right)\sqrt{x^2+1}\)

- Đặt \(\sqrt{x^2+1}=a\left(a\ge0\right)\)

PT TT : \(a^2+3x=a\left(x+3\right)\)

\(\Leftrightarrow a^2-ax-3a+3x=0\)

\(\Leftrightarrow a^2-a\left(x+3\right)+3x=0\)

Có : \(\Delta=b^2-4ac=\left(a+3\right)^2-4.3a=a^2+6a+9-12a\)

\(=a^2-6a+9=\left(a-3\right)^2\ge0\forall a\)

TH1 : \(\Delta=0\Rightarrow a=3\left(TM\right)\)

\(\Rightarrow\sqrt{x^2+1}=3\)

\(\Rightarrow x=\pm2\sqrt{2}\)

TH2 : \(\Delta>0\)

=> Pt có 2 nghiệm phân biệt :\(\left\{{}\begin{matrix}a=\dfrac{x+3+\sqrt{\left(x-3\right)^2}}{2}\\a=\dfrac{x+3-\sqrt{\left(x-3\right)^2}}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+\left|x-3\right|}{2}\\\sqrt{x^2+1}=\dfrac{x+3-\left|x-3\right|}{2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=\dfrac{2x}{2}=x\\\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\end{matrix}\right.\\\left[{}\begin{matrix}\sqrt{x^2+1}=\dfrac{x+3-x+3}{2}=3\\\sqrt{x^2+1}=\dfrac{x+3+x-3}{2}=x\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^2+1=9\\x^2+1=x^2\end{matrix}\right.\)

\(\Rightarrow x=\pm2\sqrt{2}\)

Vậy phương trình có tập nghiệm là \(S=\left\{\pm2\sqrt{2}\right\}\)

 

10 tháng 2 2021

Câu III ý 2)

Ta có:

\(P^2\le\left(a^2+b^2\right)\left[3b\left(a+2b\right)+3a\left(b+2a\right)\right]=2\left[6\left(a^2+b^2\right)+3\cdot2ab\right]\)

\(\le2\left[6\cdot2+3\left(a^2+b^2\right)\right]\le36\Rightarrow P\le6.\)

Đẳng thức xảy ra khi $a=b=1.$

Vậy...

10 tháng 2 2021

Bài V có phải là 3; 3; 4 không anh Quoc Tran Anh Le CTV?

14 tháng 6 2021

Sáng nay đề chuyên Nguyễn Huệ khó lắm ạ mình làm được mỗi câu a. :(

QT
Quoc Tran Anh Le
Giáo viên
14 tháng 6 2021

Anh đã đọc :)