K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2022

giúp vớikhocroi

11 tháng 1 2023

Kẻ EM ; FN vuông góc với AH

+)Tam giác EMA vuông tại M => góc MEA + EAM = 90o

Mà góc BAH + EAM = 90o (do góc BAE = 90o) nên góc MEA = BAH

Xét tam giác vuông BAH  và AEM có: BA = AE; góc BAH = AEM 

=> tam giác BAH = AEM ( cạnh huyền - góc nhọn)

=> EM  = AH  (1)

+) Tương tự, ta chứng minh tam giác vuông AHC = tam giác vuông FNA ( cạnh huyền - góc nhọn)

=> AH = FN    (2)

Từ (1)(2) => EM = FN

+) EM // FN (vì cùng vuông góc với AH) => góc MEO = NFO ( SLT)

+) Xét tam giác vuông MEO và NFO có: MEO = NFO; ME = NF; góc EMO = FNO (=90o)

=> tam giác MEO = tam giác  NFO ( g - c- g)

=> OE = OF => O là trung điểm của EF

Bài 2: 

Ta có: \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}\)(tia CB nằm giữa hai tia CA và CD)

\(\Leftrightarrow\widehat{ACD}=45^0+45^0=90^0\)

Xét tứ giác ACDB có 

CD//AB(cùng vuông góc với AC)

nên ACDB là hình thang có hai đáy là CD và AB(Định nghĩa hình thang)

Hình thang ACDB(CD//AB) có \(\widehat{CAB}=90^0\)(gt)

nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)

7 tháng 3 2021

Dễ nhưng dài nên lười đánh máy quá:")

a) Ta có: \(\widehat{BAH}+\widehat{ABH}=90^o\)

Mà \(\widehat{DAI}+\widehat{DAB}+\widehat{BAH}=180^O\)

\(\Leftrightarrow\widehat{DAI}+90^o+\widehat{BAH}=180^O\)

\(\Leftrightarrow\widehat{DAI}+\widehat{BAH}=90^o\)

=> \(\widehat{DAI}=\widehat{ABH}\)( cùng phụ BAH)

Xét ∆ABH và ∆DAI:

AB=AD(∆ABD vuông cân tại A)

\(\widehat{AHB}=\widehat{DIA}=90^o\)

\(\widehat{ABH}=\widehat{DAI}\left(cmt\right)\)

=>∆ABH=∆DAI (ch.gn)

b) Theo câu a: ∆ABH=∆DAI

=> AH=DI (2 cạnh t/ứ)(1)

Cmtt câu a ta được ∆AKE=∆CHA 

=> EK=AH (2 canh t/ứ) (2)

Từ (1) và (2) suy ra DI=EK

c) Gọi giao điểm của DE và HA là F

Xét ∆FID và ∆FKE:DI=K (cm ở câu b)

\(\widehat{FID}=\widehat{FKE}=90^o\)

\(\widehat{IFD}=\widehat{KFE}\) (2 góc đối đỉnh)

=> ∆FID=∆FKE (cgv.gn)

=> DF=EF (2 canh t/ứ)

=> F là trung điểm của DE 

=> AH cắt DE tại trung điểm của DE

22 tháng 3 2021

(hình tự vẽ,gt kl tự viết).

a) xét \(\Delta ADB\) và \(\Delta EDC\) có:

góc BAD = góc CED(=90 độ)

góc BDA = góc CDE(đối đỉnh)

=> \(\Delta ADB\sim\Delta EDC\left(g.g\right)\)

 

 

22 tháng 3 2021

b) xét \(\Delta ADE\) và \(\Delta BDC\) có:

\(\dfrac{DE}{DB}=\dfrac{AD}{DC}\left(\Delta ADB\sim\Delta EDC\right)\)

góc ADE = góc BDC ( đối đỉnh )

=> \(\Delta ADE\sim\Delta BDC\left(c.g.c\right)\)

10 tháng 8 2018

Vi tam giac AMB can tai A nen AM=AB ma AB=DC ( ABCD la hbh ) suy ra AM=AB=CD

tuong tu BC=CN=AD

Ta co DM=AD+AM

         DN=DC+CN

Ma AD=CN va AM=CD nen DM=DN suy ra tam giac DMN can tai D (dpcm)

a) Xét ΔADB và ΔCDI có

\(\widehat{ADB}=\widehat{CDI}\)(hai góc đối đỉnh)

\(\widehat{BAD}=\widehat{ICD}\)(gt)

Do đó: ΔADB\(\sim\)ΔCDI(g-g)

còn câu b nữa em