K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

a) 2n + 1 = 2n - 12 + 13

= 2(n - 6) +13

=> 2n + 1 chia hết cho 6 - n khi và chỉ khi 13 chia hết cho 6 - n

=> \(6-n\in\left\{1;13;-1;-13\right\}\)

=> \(n\in\left\{5;-7;7;19\right\}\)

b) 3n = 3n - 3 + 3 = 3(n - 1) + 3

=> 3n chia hết cho n - 1 khi và chỉ khi n- 1 là ước của 3

 <=> \(n-1\in\left\{1;-1;3;-1\right\}\)

=> \(n\in\left\{2;0;4;-2\right\}\)

Chúc bạn làm bài tốt

 

17 tháng 8 2018

Ta có : n + 3 = (n + 1) + 2

Do n + 1\(⋮\)n + 1

Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}

Lập bảng :

 n + 1 1  -1 2 -2
   n 0 -2 1 -3

Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1

b) Ta có : 2n + 7 = 2.(n - 3) + 13 

Do n - 3 \(⋮\)n - 3

Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ;  13}

Lập bảng :

 n - 3 1 -1 13 -13
   n 4 2 16 -10

Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3

17 tháng 8 2018

Bài 1 :

a) \(n+3⋮n+1\)

\(a+1+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

n+11-12-2
n0-21-3

b) c) d) tương tự

Bài 2 :

\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)

\(A=5+4^2\cdot5+...+4^{58}\cdot5\)

\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)

Còn lại : tương tự

Bài 5: 

b: Ta có: \(n+6⋮n+2\)

\(\Leftrightarrow n+2\in\left\{2;4\right\}\)

hay \(n\in\left\{0;2\right\}\)

c: Ta có: \(3n+1⋮n-2\)

\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)

hay \(n\in\left\{1;3;9\right\}\)

12 tháng 1 2017

a) n+3=n-2+5 Để n+3 chia hết chp n-2 thì 5 chia hết cho n-2 => n-2 thuộc ước của 5 => n-2 thuộc { -5;-1:1;5}

=> n= tự tìm

16 tháng 11 2022

1: =>3n-12+17 chia hết cho n-4

=>\(n-4\in\left\{1;-1;17;-17\right\}\)

hay \(n\in\left\{5;3;21;-13\right\}\)

2: =>6n-2+9 chia hết cho 3n-1

=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)

hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)

4: =>2n+4-11 chia hết cho n+2

=>\(n+2\in\left\{1;-1;11;-11\right\}\)

hay \(n\in\left\{-1;-3;9;-13\right\}\)

5: =>3n-4 chia hết cho n-3

=>3n-9+5 chia hết cho n-3

=>\(n-3\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{4;2;8;-2\right\}\)

6: =>2n+2-7 chia hết cho n+1

=>\(n+1\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{0;-2;6;-8\right\}\)

4 tháng 7 2017

2) Ta có : 2n - 2 = 2(n - 1) chia hết cho n - 1

Nên với mọi giá trị của n thì 2n - 2 đều chia hết cho n - 1

3) Ta có : 5n - 1 chia hết chi n - 2  

=> 5n - 10 + 9 chia hết chi n - 2 

=> 5(n - 2) + 9 chia hết chi n - 2 

=> n - 2 thuộc Ư(9) = {1;3;9}

Ta có bảng : 

n - 2139
n3511
4 tháng 7 2017

1) Ta có : 2n + 3 chia hết cho 3n + 1 

<=> 6n + 9 chia hết cho 3n + 1

<=> 6n + 2 + 7 chia hết cho 3n + 1

=>  7 chia hết cho 3n + 1

=> 3n + 1 thuộc Ư(7) = {1;7}

Ta có bảng : 

3n + 117
3n06
n02

Vậy n thuộc {0;2}

5 tháng 7 2017

Ta có n-3=n+4-7

6)=>n-4+7 chia hết cho n+4

=>7 chia hết cho n+4

=> n+4 thuộc Ư(7)

=> n+4 thuộc {1, -1,7,-7}

=> n thuộc {-3,-5,3,-11}

6 tháng 10 2017

Câu 1:

a) n+4 chia hết cho n

suy ra 4 chia hết cho n(vì n chia hết cho n)

suy ra n thuộc Ư(4) {1;2;4}

Vậy n {1;2;4}

b) 3n+7 chia hết cho n

suy ra 7 chia hết cho n(vì 3n chia hết cho n)

suy ra n thuộc Ư(7) {1;7}

Vậy n {1;7}

c) 27-5n chia hết cho n

suy ra 27 chia hết cho n(vì 5n chia hết cho n)

suy ra n thuộc Ư(27) {1;3;9;27}

Vậy n {1;3;9;27}

d) n+6 chia hết cho n+2 

suy ra (n+2)+4 chia hết cho n+2

suy ra 4 chia hết cho n+2(vì n+2 chia hết cho n+2)

suy ra n+2 thuộc Ư(4) {1;2;4}

n+2 bằng 1 (loại)

n+2 bằng 2 suy ra n bằng 0

n+2 bằng 4 suy ra n bằng 2

Vậy n {0;2}

e) 2n+3 chia hết cho n-2

suy ra 2(n-2)+7 chia hết cho n-2

suy ra 7 chia hết cho n-2(vì 2(n-2) chia hết cho n-2)

suy ra n-2 thuộc Ư(7) {1;7}

n-2 bằng 1 suy ra n bằng 3

n-2 bằng 7 suy ra n bằng 9

Vậy n {3;9}

27 tháng 9 2015

a) Ta có: n+4 chia hết cho 4.

Suy ra 4 chia hết cho n.Vậy n=1;2

b, 3n+7 chia hết cho n => 7 chia hết n

Vậy n=1

còn nhiều quá