Bài 5: Cho tam giác ABC có BC = 2AB. Gọi M là trung điểm của BC, N là trung điểm của BM. Trên tia đối của tia NA lấy điểm E sao cho AN = EN. Chứng minh:
a)△ NAB =△ NEM
b) MAB là tam giác cân
c) M là trọng tâm của tam giác AEC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔNAB và ΔNEM có
NA=NE(gt)
\(\widehat{ANB}=\widehat{ENM}\)(hai góc đối đỉnh)
NB=NM(N là trung điểm của BM)
Do đó: ΔNAB=ΔNEM(c-g-c)
b) Ta có: BC=2AB(gt)
mà BC=2BM(M là trung điểm của BC)
nên AB=BM
Xét ΔBAM có BA=BM(cmt)
nên ΔBAM cân tại B(Định nghĩa tam giác cân)
a: Xét ΔNAB và ΔNEM có
NA=NE
\(\widehat{ANB}=\widehat{ENM}\)
NB=NM
Do đó:ΔNAB=ΔNEM
b: Xét ΔMAB có BA=BM
nên ΔBAM cân tại B
c: Xét ΔAEC có
CN là đường trung tuyến
CM=2/3CN
Do đó: M là trọng tâm của ΔAEC
xét tam giác NAB và tam giác NEm , có
AN=NE
MN=NB
góc ANB = góc ANB
=> TAM GIÁC NAB = TAM GIÁC NEM (c.g.c)
a) xét tam giác NAB và tam giác NEM có
AN=EN ( theo gt )
BN=MN ( theo gt )
góc ANB = góc MNE ( đối đỉnh )
Vậy => tam giác NAB = tam giác NEM ( c.g.c )
b0 vì MB=MC ( gt ) (1)
Mà BC=2AB ( gt ) (2)
từ (1) và (2) => AB=MB
=> tam giác MAB cân tại B
c) xét tam giác CAE có
AN = NE ( Theo gt ) => CN là trung tuyến thuộc cạnh AE (1)
Vì MN = BN ( gt ) ; MB = MC ( gt ) => Mn = 1/2 MC hay CM = 2/3 CN (2)
từ (1) và (2) => M là trọng tâm của tam giác ACE
k cho mk nha
a) Xét tam giác NAB và tam giác NEM có:
NA = NE ( gt)
ANB = ENM ( đối đỉnh )
BN = NM ( N là trung điểm BM )
=> tam giác NAB = tam giác NEM ( cgc)
b. Ta có M là trung điểm BC (gt)
=> BM = MC = 1/2 BC (1)
Lại có : BC = 2 AB ( gt)
=> AB = 1/2 BC (2)
Từ (1) và (2) => BM=MC=AB hay BM = AB
=> tam giác ABM cân tại B.
c. Ta có : tam giác ANB = tam giác ENM ( cm câu a)
=> góc ABN = góc EMN (góc tương ứng )
Mà chúng ở vị trí so le trong => AB // ME
Gọi giao điểm của EM và AC là I => IE // AB (I thuộc AC do cách dựng) => MI // AB
Xét tam giác ABC có : IM // AB ( cmt)
=> MC / BM = CI / IA
Mà MC = BM (gt) => CI = CA => EI là trung tuyến tam giác AEC
Mà CN cũng là trung tuyến tam giác AEC ( AN = NE )
CN giao EI tại M => M là trọng tâm tam giác AEC.
d. Ta có M là trọng tâm tam giác AEC (cmt)
=> MA = MC(tc trọng tâm tam giác)
=> MA = AB = MB => Tam giác ABM đều => góc BAM = 60 độ
Ta có : AN là trung tuyến tam giác ABN (N là trung điểm NB)
=> AN cũng là đường cao và là đường phân giác
=> ANB = 90 độ và góc BAN = 1/2 . 60= 30 độ
Xét tam giác ABN có
Góc A < B < N
=> BN < AN < AB ( quan hệ giữa cạnh và góc đối diện)
Hay AB > AN => AB > 2/3 AN.
a) Xét tam giác NAB và tam giác NEM có AN=EN; BN=MN; góc ENM =góc BNA =>2 tam giác bằng nhau b)ta có BC=2Ab => Bc/2 = AB => BM=cm=ma =>tam giác MAb cân tại b
(Bạn tự vẽ hình nha )
a) Xét tam giác NAB và tam giác NEM có:
NA = NE ( gt)
ANB = ENM ( đối đỉnh )
BN = NM ( N là trung điểm BM )
=> tam giác NAB = tam giác NEM ( cgc)
b. Ta có M là trung điểm BC (gt)
=> BM = MC = 1/2 BC (1)
Lại có : BC = 2 AB ( gt)
=> AB = 1/2 BC (2)
Từ (1) và (2) => BM=MC=AB hay BM = AB
=> tam giác ABM cân tại B.
c. Ta có : tam giác ANB = tam giác ENM ( cm câu a)
=> góc ABN = góc EMN (góc tương ứng )
Mà chúng ở vị trí so le trong => AB // ME
Gọi giao điểm của EM và AC là I => IE // AB (I thuộc AC do cách dựng) => MI // AB
Xét tam giác ABC có : IM // AB ( cmt)
=> MC / BM = CI / IA
Mà MC = BM (gt) => CI = CA => EI là trung tuyến tam giác AEC
Mà CN cũng là trung tuyến tam giác AEC ( AN = NE )
CN giao EI tại M => M là trọng tâm tam giác AEC.
d. Ta có M là trọng tâm tam giác AEC (cmt)
=> MA = MC(tc trọng tâm tam giác)
=> MA = AB = MB => Tam giác ABM đều => góc BAM = 60 độ
Ta có : AN là trung tuyến tam giác ABN (N là trung điểm NB)
=> AN cũng là đường cao và là đường phân giác
=> ANB = 90 độ và góc BAN = 1/2 . 60= 30 độ
Xét tam giác ABN có
Góc A < B < N
=> BN < AN < AB ( quan hệ giữa cạnh và góc đối diện)
Hay AB > AN => AB > 2/3 AN.
vẽ cả hình giúp mik nx nhé