Bài toán 9. Tính các tổng sau.
a) 1 + 2+ 3+ 4 +....+ n b) 2+4+6+8+...+2.n
c) 1+3+5+7+...+(2.n +1) d) 1+4+7+10+..+2005
e) 2+5+8+...+2006 f) 1+5+9+..+2001
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh nhận bú lồn hoàn toàn free nha mấy em, em nào có nhu cần thì liên hệ anh
Cái tên.. àk mà thôi -_-
\(a)\) \(1+2+3+4+...+n=\frac{n\left(n+1\right)}{2}\)
\(b)\) \(2+4+6+8+...+2n=\left(\frac{2n-2}{2}+1\right)\left(2n+2\right)=\frac{2n\left(2n+2\right)}{2}=2n\left(n+1\right)\)
\(c)\) \(1+3+5+...+\left(2n+1\right)=\left(\frac{2n+1-1}{2}+1\right)\left(2n+1+1\right)=\frac{\left(2n+2\right)\left(2n+2\right)}{2}=\frac{\left(2n+2\right)^2}{2}\)
\(d)\) \(1+4+7+10+...+2005=\left(\frac{2005-1}{3}+1\right)\left(2005+1\right)=1342014\)
\(e)\) \(2+5+...+2006=\left(\frac{2006-2}{3}+1\right)\left(2006+2\right)=1343352\)
\(g)\) \(1+5+9+...+2001=\left(\frac{2001-1}{4}+1\right)\left(2001+1\right)=1003002\)
Chúc bạn học tốt ~
a) 1+2+3+4+5+...+n = n(n+1) / 2
b)2+4+6+...+2n = [(2n-2):2+1] . (2n+2)/2 = n . ( 2n+2) /2
a) 1 + 2 + 3 + ... + n ( n số hạng )
= ( n + 1 ) . n : 2
\(=\frac{n^2+n}{2}\)
Giải thích về phần số hạng của câu này :
( 2n - 2 ) : 2 + 1 = 2( n - 1 ) : 2 + 1 = ( n - 1 ) + 1 = n - ( 1 - 1 ) = n
b) 2 + 4 + 6 + 6 + ... + 2n ( có n số hạng )
= ( 2n + 2 ) . n : 2
= 2n( n + 1 ) : 2
= n . ( n + 1 )
= n2 + n