Viết các biểu thức sau dưới dạng tổng:
(x+y+z+t).(x+y-z-t)
(x-y+z-t).(x-y-z+t)
(x+2y+3z+t)^3
(x^2+2x-1)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(\left(a^2+2a+3\right)\left(a^2-2a-3\right)\)
\(=\left[a^2+\left(2a+3\right)\right]\left[a^2-\left(2a+3\right)\right]\)
\(=\left(a^2\right)^2-\left(2a+3\right)^2\)
\(=a^4-\left(2a+3\right)^2\)
b: \(\left(-a^2-2a+3\right)^2\)
\(=\left(a^2+2a-3\right)^2\)
\(=a^4+4a^2+9+4a^3-18a-6a^2\)
\(=a^4+4a^3-2a^2-18a+9\)
c: \(\left(x-y-z\right)^2\)
\(=x^2-2x\left(y+z\right)+\left(y+z\right)^2\)
\(=x^2-2xy-2xz+y^2+2yz+z^2\)
d: \(\left(x+y+z\right)\left(x-y-z\right)\)
\(=x^2-\left(y+z\right)^2\)
\(=x^2-y^2-2yz-z^2\)
( x + y + z +t )( x + y - z - t)
= ( x + y)^2 - ( z + t)^2
= x^2 + 2xy + y^2 - z^2 - 2zt - t^2
Theo đề, ta có: \(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{t}=\dfrac{t}{x}\) \(=\dfrac{x+y+z+t}{y+z+t+x}=1\) .
\(\Rightarrow x=y;y=z;z=t;t=x\)
\(\Rightarrow x=y=z=t\)
\(M=\dfrac{2x-y}{z+t}+\dfrac{2y-z}{t+x}+\dfrac{2z-t}{x+y}+\dfrac{2t-x}{y-z}\)
\(M=\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}+\dfrac{2x-x}{x+x}\)
\(M=\dfrac{1}{2}.4\)
\(M=2\)
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
y+z+t-nx/x=z+t+x-ny/y
\(\Leftrightarrow\)y=x
y+z+t-nx/x=t+x+y-nz/z
\(\Leftrightarrow\)z=x
z+t+x-ny/y=x+y+z-nt/t
\(\Leftrightarrow\)t=y
ta có y=x; z=x; t=y \(\Rightarrow\) x=y=z=t
Vậy ta có x=y=t=z
vậy phương trình P trở thành P=3z-3z=0
Bạn có gì thắc mắc về bài giải, nói cho mình để mình giải đáp cho.
a) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x+3y-1}{30+60-28}=\dfrac{186}{62}=3\)
\(\dfrac{x}{15}=3\Rightarrow x=45\\ \dfrac{y}{20}=3\Rightarrow y=60\\ \dfrac{z}{28}=3\Rightarrow x=84\)
b) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+2y-3z}{2+6-12}=\dfrac{-20}{-4}=5\)
\(\dfrac{x}{2}=5\Rightarrow x=10\\ \dfrac{y}{3}=5\Rightarrow y=15\\ \dfrac{z}{4}=5\Rightarrow z=20\)
c) x : y :z : t = 3 : 4 : 5 :6\(\Rightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{t}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}=\dfrac{t}{6}=\dfrac{x+y+z+t}{3+4+5+6}=\dfrac{3,6}{18}=\dfrac{1}{5}\)
\(\dfrac{x}{3}=\dfrac{1}{5}\Rightarrow x=\dfrac{3}{5}\\ \dfrac{y}{4}=\dfrac{1}{5}\Rightarrow y=\dfrac{4}{5}\\ \dfrac{z}{5}=\dfrac{1}{5}\Rightarrow z=1\\ \dfrac{t}{6}=\dfrac{1}{5}\Rightarrow t=\dfrac{6}{5}\)
d) \(\dfrac{x}{2}=\dfrac{y}{3}\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}\)
\(\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{15}=\dfrac{z}{12}\)
\(\Rightarrow\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{10-15+12}=-\dfrac{49}{7}=-7\)
\(\dfrac{x}{10}=-7\Rightarrow x=-70\\ \dfrac{y}{15}=-7\Rightarrow y=-105\\ \dfrac{z}{12}=-7\Rightarrow z=-84\)
e) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x^2-y^2+2z^2}{4-9+32}=\dfrac{108}{27}=4\)
\(\dfrac{x}{2}=4\Rightarrow x=8\\ \dfrac{y}{3}=4\Rightarrow y=12\\ \dfrac{z}{4}=4\Rightarrow z=16\)