Cho hình chóp SABCD có ABCD là hình vuông cạnh a, SA vuông góc với mp (ABCD) SC tạo với mp (ABCD) một góc 45 độ. Gọi E là trung điểm BC. Tính thể tích khối chóp SABCD và khoảng cách giữa hai đường thẳng DE và SC
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NV
Nguyễn Việt Lâm
Giáo viên
11 tháng 12 2021
\(SA\perp\left(ABCD\right)\Rightarrow SA\perp AC\Rightarrow\Delta SAC\) vuông cân tại A
\(\Rightarrow SA=AC=\dfrac{SC}{\sqrt[]{2}}=2a\sqrt{2}\)
ABCD là hình vuông \(\Rightarrow AB=\dfrac{AC}{\sqrt{2}}=2a\)
\(\Rightarrow V=\dfrac{1}{3}SA.AB^2=\dfrac{8a^3\sqrt{2}}{3}\)
\(\alpha=\widehat{BSA}\Rightarrow tan\alpha=\dfrac{AB}{SA}=\dfrac{1}{\sqrt{2}}\Rightarrow\alpha\approx35^016'\)