K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 7 2016

Chứng minh bằng phản chứng :

Giả sử ngược lại, phương trình \(x^2=2\) có nghiệm \(x\in Q\) , tức là \(x=\frac{p}{q}\) (p,q \(\in Z,q\ne0\)) , \(\frac{p}{q}\) tối giản

Giải \(x^2=2\) được : \(x=\pm\sqrt{2}\)

Do đó: \(\sqrt{2}=\frac{p}{q}\) (Ta chỉ xét trường hợp \(x=\sqrt{2}\) , trường hợp \(x=-\sqrt{2}\) cũng tương tự)

Ta cần chứng minh \(\sqrt{2}\) không là số hữu tỉ.

Ta có : \(\sqrt{2}=\frac{p}{q}\Leftrightarrow p^2=2q^2\left(1\right)\Rightarrow p^2⋮2\Rightarrow p⋮2\) ( vì 2 là số nguyên tố)

Đặt \(p=2k\left(k\in Z\right)\Rightarrow p^2=4k^2\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4k^2=2q^2\) nên \(q^2=2k^2\) (3)

Từ (3) lại có \(q^2⋮2\Rightarrow q⋮2\)

p và q cùng chia hết cho 2 nên phân số \(\frac{p}{q}\) không tối giản, trái với giả thiết.

Vậy \(\sqrt{2}\) không là số hữu tỉ, tức là \(x\notin Q\)

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.4. Chứng minh rằng :...
Đọc tiếp

1. Chứng minh rằng một tam giác có đường trung tuyến vừa là phân giác xuất phát từ 1 đỉnh là tam giác cân tại đỉnh đó.

2. Chứng minh bằng phương pháp phản chứng : Nếu phương trình bậc hai ax2 + bx + c = 0 vô nghiệm thì a và c cùng dấu.

3. Chứng minh bằng phương pháp phản chứng : Nếu 2 số nguyên dương có tổng bình phương chia hết cho 3 thì cả hai số đó phải chia hết cho 3.

4. Chứng minh rằng : Nếu độ dài các cạnh của tam giác thỏa mãn bất đẳng thức a2 + b2 > 5c2 thì c là độ dài cạnh nhỏ nhất của tam giác.

5. Cho a, b, c dương nhỏ hơn 1. Chứng minh rằng ít nhất một trong ba bất đẳng thức sau sai

a( 1 - b) > 1/4 ; b( 1- c) > 1/4 ; c( 1 - a ) > 1/4 

6. Chứng minh rằng \(\sqrt{ }\)2 là số vô tỉ

7. Cho các số a, b, c thỏa mãn các điều kiện: 

{ a+ b+ c> 0             (1)

{ ab + bc + ca > 0    (2)       

{ abc > 0                    ( 3)

CMR : cả ba số a, b, c đều dương

8. Chứng minh bằng phản chứng định lí sau : "Nếu tam giác ABC có các đường phân giác trong BE, CF bằng nhau, thì tam giác ABC cân".

9. Cho 7 đoạn thẳng có độ dài lớn hơn 10 và nhỏ hơn 100. CMR luôn tìm được 3 đoạn để có thể ghép thành 1 tam giác.

2
11 tháng 7 2018

Này là toán lớp 7

11 tháng 7 2018

Lớp 10 đấy

Bài 1:

 Đến hết năm 2006 số dân tăng của phường là :

                 14 500 : 100 x 1,2 = 174 ( người )

 Đến hết năm 2006 số dân của phường là :

                 14 500 + 174 = 14 674 ( người )

                                       Đáp số : 14 674 người

Bài 2:

 Gọi số tiền vốn của người đó là 100 %

Số % tiền người đó thu về là :

           100 % - 6 % = 94 %

Số tiền người đó thu về là :

            45 000 : 100 x 94 = 42 300 ( đồng )

                                   Đáp số : 42 300 đồng

23 tháng 4 2017

ko xài pc dc k ?

23 tháng 4 2017

nhưng cô tôi bảo dùng phản chứng bạn ạ :)

22 tháng 4 2016

 P(x) có hai nghiệm ​​​x1, xkhác nhau => P(x1) = 0 và P(x2) = 0

=>  P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x khác 0)

Mà  P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0

Vậy a = b = 0

22 tháng 4 2016

 P(x) có hai nghiệm ​​​x1, xkhác nhau => P(x1) = 0 và P(x2) = 0

=>  P(x1) = P(x2) => a.x1 + b = a.x2 + b => a.x1 = a.x2 => a.(x1 - x2) = 0 => a = 0 (Vì x1 khác x2 nên x1 - x khác 0)

Mà  P(x1) = 0 => a.x1 + b = 0 ; a = 0 => b = 0

Vậy a = b = 0

14 tháng 8 2015

a,a+b+c=0 <=>c=-a-b

Khi đ f(x)=ax^2+bx-a-b

f(x)=a(x^2-1)+b(x-1)=(x-1)(ax+a+b)

=>f(x) có nghiệm x=1

b,a-b+c=0 <=>c=b-a

Khi đó f(x)=ax^2+bx+b-a

f(x)=a(x^2-1)+b(x+1)=(x+1)(ax-a+b)

=>f(x) có nghiệm x=-1

 

11 tháng 4 2017

a. Ta có: \(f\left(1\right)=a.1^2+b.1+c\)

\(f\left(1\right)=a+b+c\)

Mà theo đề bài có a+b+c=0

=>\(f\left(1\right)=0\)

x=1 là một nghiệm của đa thức f(x)

Phần b bạn làm tương tự nhé

8 tháng 9 2019

Cho 4 số a,b,c,d khác 0 thỏa mãn abcd=1 và a+b+c+d=1/a+1/b+1/c+/1d. chứng minh rằng tồn tại tích hai số trong 4 số bằng